TY - JOUR A1 - Brill, Fabio Alexander A1 - Passuni Pineda, Silvia A1 - Espichan Cuya, Bruno A1 - Kreibich, Heidi T1 - A data-mining approach towards damage modelling for El Nino events in Peru JF - Geomatics, natural hazards and risk N2 - Compound natural hazards likeEl Ninoevents cause high damage to society, which to manage requires reliable risk assessments. Damage modelling is a prerequisite for quantitative risk estimations, yet many procedures still rely on expert knowledge, and empirical studies investigating damage from compound natural hazards hardly exist. A nationwide building survey in Peru after theEl Ninoevent 2017 - which caused intense rainfall, ponding water, flash floods and landslides - enables us to apply data-mining methods for statistical groundwork, using explanatory features generated from remote sensing products and open data. We separate regions of different dominant characteristics through unsupervised clustering, and investigate feature importance rankings for classifying damage via supervised machine learning. Besides the expected effect of precipitation, the classification algorithms select the topographic wetness index as most important feature, especially in low elevation areas. The slope length and steepness factor ranks high for mountains and canyons. Partial dependence plots further hint at amplified vulnerability in rural areas. An example of an empirical damage probability map, developed with a random forest model, is provided to demonstrate the technical feasibility. KW - Natural hazard KW - damage model KW - residential buildings KW - data-mining KW - remote KW - sensing KW - open data Y1 - 2020 U6 - https://doi.org/10.1080/19475705.2020.1818636 SN - 1947-5705 SN - 1947-5713 VL - 11 IS - 1 SP - 1966 EP - 1990 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -