TY - JOUR A1 - Schöller, Markus A1 - Hubrig, Swetlana A1 - Fossati, L. A1 - Carroll, Thorsten Anthony A1 - Briquet, Maryline A1 - Oskinova, Lida A1 - Järvinen, S. A1 - Ilyin, Ilya A1 - Castro, N. A1 - Morel, T. A1 - Langer, N. A1 - Przybilla, N. A1 - Nieva, M. -F. A1 - Kholtygin, A. F. A1 - Sana, H. A1 - Herrero, A. A1 - Barba, R. H. A1 - de Koter, A. T1 - B fields in OB stars (BOB) BT - Concluding the FORS2 observing campaign JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. The B fields in OB stars (BOB) Collaboration is based on an ESO Large Programme to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. Methods. In the framework of this program, we carried out low-resolution spectropolarimetric observations of a large sample of massive stars using FORS2 installed at the ESO VLT 8m telescope. Results. We determined the magnetic field values with two completely independent reduction and analysis pipelines. Our in-depth study of the magnetic field measurements shows that differences between our two pipelines are usually well within 3 sigma errors. From the 32 observations of 28 OB stars, we were able to monitor the magnetic fields in CPD -57 degrees 3509 and HD164492C, confirm the magnetic field in HD54879, and detect a magnetic field in CPD -62 degrees 2124. We obtain a magnetic field detection rate of 6 +/- 3% for the full sample of 69 OB stars observed with FORS 2 within the BOB program. For the preselected objects with a nu sin i below 60 km s(-1), we obtain a magnetic field detection rate of 5 +/- 5%. We also discuss X-ray properties and multiplicity of the objects in our FORS2 sample with respect to the magnetic field detections. KW - polarization KW - stars: early-type KW - stars: magnetic field KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201628905 SN - 1432-0746 VL - 599 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Shenar, Tomer A1 - Oskinova, Lida A1 - Jaervinen, S. P. A1 - Luckas, P. A1 - Hainich, Rainer A1 - Todt, Helge Tobias A1 - Hubrig, Swetlana A1 - Sander, Andreas Alexander Christoph A1 - Ilyin, Ilya A1 - Hamann, Wolf-Rainer T1 - Constraining the weak-wind problem BT - an XMM-HST campaign for the magnetic 09.7 V star HD 54879 JF - Contributions Of The Astronomical Observatory Skalnate Pleso N2 - Mass-loss rates of massive, late type main sequence stars are much weaker than currently predicted, but their true values are very difficult to measure. We suggest that confined stellar winds of magnetic stars can be exploited to constrain the true mass-loss rates M of massive main sequence stars. We acquired UV, X-ray, and optical amateur data of HD 54879 (09.7 V), one of a few O-type stars with a detected atmospheric magnetic field (B-d greater than or similar to 2 kG). We analyze these data with the Potsdam Wolf-Rayet (PoWR) and XSPEC codes. We can roughly estimate the mass-loss rate the star would have in the absence of a magnetic field as log M-B=0 approximate to -9.0 M-circle dot yr(-1). Since the wind is partially trapped within the Alfven radius rA greater than or similar to 12 R-*,, the true mass-loss rate of HD 54879 is log M less than or similar to -10.2 M-circle dot yr(-1). Moreover, we find that the microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (< 4 km s(-1)). An initial mass of 16 M-circle dot and an age of 5 Myr are inferred. We derive a mean X-ray emitting temperature of log T-x = 6.7 K and an X-ray luminosity of log L-x = 32 erg s(-1). The latter implies a significant X-ray excess (log L-x/L-Bol approximate to - 6.0), most likely stemming from collisions at the magnetic equator. A tentative period of P approximate to 5 yr is derived from variability of the Ha line. Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars. KW - stars: massive KW - stars: magnetic field KW - stars: mass-loss Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731291 SN - 1335-1842 SN - 1336-0337 VL - 48 IS - 1 SP - 139 EP - 143 PB - Astronomický Ústav SAV CY - Tatranská Lomnica ER - TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Cavallaro, Francesco A1 - Ingallinera, A. A1 - Bufano, F. A1 - Phillips, N. M. A1 - Agliozzo, Claudia A1 - Cerrigone, L. A1 - Todt, Helge Tobias A1 - Riggi, S. A1 - Leone, Francesco T1 - The polarization mode of the auroral radio emission from the early-type star HD 142301 JF - Monthly notices of the Royal Astronomical Society N2 - We report the detection of the auroral radio emission from the early-type magnetic star HD142301. New VLA observations of HD142301 detected highly polarized amplified emission occurring at fixed stellar orientations. The coherent emission mechanism responsible for the stellar auroral radio emission amplifies the radiation within a narrow beam, making the star where this phenomenon occurs similar to a radio lighthouse. The elementary emission process responsible for the auroral radiation mainly amplifies one of the two magneto-ionic modes of the electromagnetic wave. This explains why the auroral pulses are highly circularly polarized. The auroral radio emission of HD142301 is characterized by a reversal of the sense of polarization as the star rotates. The effective magnetic field curve of HD142301 is also available making it possible to correlate the transition from the left to the right-hand circular polarization sense ( and vice versa) of the auroral pulses with the known orientation of the stellar magnetic field. The results presented in this letter have implications for the estimation of the dominant magneto-ionic mode amplified within the HD142301 magnetosphere. KW - masers KW - polarization KW - stars: early-type KW - stars: individual: HD142301 KW - stars: magnetic field KW - radio continuum: stars Y1 - 2018 U6 - https://doi.org/10.1093/mnrasl/sly179 SN - 0035-8711 SN - 1365-2966 VL - 482 IS - 1 SP - L4 EP - L8 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Ingallinera, A. A1 - Todt, Helge Tobias A1 - Leone, F. T1 - The detection of variable radio emission from the fast rotating magnetic hot B-star HR 7355 and evidence for its X-ray aurorae JF - Monthly notices of the Royal Astronomical Society N2 - In this paper, we investigate the multiwavelength properties of the magnetic early B-type star HR 7355. We present its radio light curves at several frequencies, taken with the Jansky Very Large Array, and X-ray spectra, taken with the XMM-Newton X-ray telescope. Modelling of the radio light curves for the Stokes I and V provides a quantitative analysis of the HR 7355 magnetosphere. A comparison between HR 7355 and a similar analysis for the Ap star CU Vir allows us to study how the different physical parameters of the two stars affect the structure of the respective magnetospheres where the non-thermal electrons originate. Our model includes a cold thermal plasma component that accumulates at high magnetic latitudes that influences the radio regime, but does not give rise to X-ray emission. Instead, the thermal X-ray emission arises from shocks generated by wind stream collisions close to the magnetic equatorial plane. The analysis of the X-ray spectrum of HR 7355 also suggests the presence of a non-thermal radiation. Comparison between the spectral index of the power-law X-ray energy distribution with the non-thermal electron energy distribution indicates that the non-thermal X-ray component could be the auroral signature of the non-thermal electrons that impact the stellar surface, the same non-thermal electrons that are responsible for the observed radio emission. On the basis of our analysis, we suggest a novel model that simultaneously explains the X-ray and the radio features of HR 7355 and is likely relevant for magnetospheres of other magnetic early-type stars. KW - stars: chemically peculiar KW - stars: early-type KW - stars: individual: HR 7355 KW - stars: magnetic field KW - radio continuum: stars KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx267 SN - 0035-8711 SN - 1365-2966 VL - 467 SP - 2820 EP - 2833 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Pillitteri, Ignazio A1 - Wolk, Scott J. A1 - Reale, Fabio A1 - Oskinova, Lida T1 - The early B-type star Rho Ophiuchi A is an X-ray lighthouse JF - Astronomy and astrophysics : an international weekly journal N2 - We present the results of a 140 ks XMM-Newton observation of the B2 star rho Oph A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely correspond to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK (kT similar to 5 keV). From the analysis of its rise, we infer a magnetic field of >= 300 G and a size of the flaring region of similar to 1.4-1.9 x 10(11) cm, which corresponds to similar to 25%-30% of the stellar radius. We speculate that either an intrinsic magnetism that produces a hot spot on its surface or an unknown low mass companion are the source of such X-rays and variability. A hot spot of magnetic origin should be a stable structure over a time span of >= 2.5 yr, and suggests an overall large scale dipolar magnetic field that produces an extended feature on the stellar surface. In the second scenario, a low mass unknown companion is the emitter of X-rays and it should orbit extremely close to the surface of the primary in a locked spin-orbit configuration, almost on the verge of collapsing onto the primary. As such, the X-ray activity of the secondary star would be enhanced by its young age, and the tight orbit as in RS Cvn systems. In both cases rho Oph would constitute an extreme system that is worthy of further investigation. KW - stars: activity KW - stars: individual: Rho Ophiuchi KW - stars: early-type KW - stars: magnetic field KW - starspots KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201630070 SN - 1432-0746 VL - 602 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Przybilla, Norbert A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Nieva, M. -F. A1 - Jaervinen, S. P. A1 - Castro, Norberto A1 - Schoeller, M. A1 - Ilyin, Ilya A1 - Butler, Keith A1 - Schneider, F. R. N. A1 - Oskinova, Lida A1 - Morel, T. A1 - Langer, N. A1 - de Koter, A. T1 - B fields in OB stars (BOB): Detection of a magnetic field in the He-strong star CPD-57 degrees 3509 JF - Organic letters N2 - Methods. Spectropolarimetric observations with FORS2 and HARPSpol are analysed using two independent approaches to quantify the magnetic field strength. A high-S/N FLAMES/GIRAFFE spectrum is analysed using a hybrid non-LTE model atmosphere technique. Comparison with stellar evolution models constrains the fundamental parameters of the star. Results. We obtain a firm detection of a surface averaged longitudinal magnetic field with a maximum amplitude of about 1 kG. Assuming a dipolar configuration of the magnetic field, this implies a dipolar field strength larger than 3.3 kG. Moreover, the large amplitude and fast variation (within about 1 day) of the longitudinal magnetic field implies that CPD-57 degrees 3509 is spinning very fast despite its apparently slow projected rotational velocity. The star should be able to support a centrifugal magnetosphere, yet the spectrum shows no sign of magnetically confined material; in particular, emission in H alpha is not observed. Apparently, the wind is either not strong enough for enough material to accumulate in the magnetosphere to become observable or, alternatively, some leakage process leads to loss of material from the magnetosphere. The quantitative spectroscopic analysis of the star yields an effective temperature and a logarithmic surface gravity of 23 750 +/- 250 K and 4.05 +/- 0.10, respectively, and a surface helium fraction of 0.28 +/- 0.02 by number. The surface abundances of C, N, O, Ne, S, and Ar are compatible with the cosmic abundance standard, whereas Mg, Al, Si, and Fe are depleted by about a factor of 2. This abundance pattern can be understood as the consequence of a fractionated stellar wind. CPD-57 degrees 3509 is one of the most evolved He-strong stars known with an independent age constraint due to its cluster membership. KW - stars: abundances KW - stars: atmospheres KW - stars: evolution KW - stars: magnetic field KW - stars: individual: CPD-57 degrees 3509 KW - stars: massive Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527646 SN - 1432-0746 VL - 587 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Kholtygin, A. A1 - Ilyin, Ilya A1 - Schöller, M. A1 - Oskinova, Lida T1 - THE FIRST SPECTROPOLARIMETRIC MONITORING OF THE PECULIAR O4 Ief SUPERGIANT zeta PUPPIS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The origin of the magnetic field in massive O-type stars is still under debate. To model the physical processes responsible for the generation of O star magnetic fields, it is important to understand whether correlations between the presence of a magnetic field and stellar evolutionary state, rotation velocity, kinematical status, and surface composition can be identified. The O4 Ief supergiant zeta Pup is a fast rotator and a runaway star, which may be a product of a past binary interaction, possibly having had an encounter with the cluster Trumper 10 some 2 Myr ago. The currently available observational material suggests that certain observed phenomena in this star may be related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Pup with FORS 2 mounted on the 8 m Antu telescope of the Very Large Telescope to investigate if a magnetic field is indeed present in this star. We show that many spectral lines are highly variable and probably vary with the recently detected period of 1.78 day. No magnetic field is detected in zeta Pup, as no magnetic field measurement has a significance level higher than 2.4 sigma. Still, we studied the probability of a single sinusoidal explaining the variation of the longitudinal magnetic field measurements. KW - stars: atmospheres KW - stars: early-type KW - stars: individual (zetaPup) KW - stars: magnetic field KW - stars: variables: general Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/822/2/104 SN - 0004-637X SN - 1538-4357 VL - 822 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Scholz, Kathleen A1 - Hamann, Wolf-Rainer A1 - Schoeller, M. A1 - Ignace, R. A1 - Ilyin, Ilya A1 - Gayley, K. G. A1 - Oskinova, Lida T1 - Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry JF - Monthly notices of the Royal Astronomical Society N2 - To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights. KW - techniques: polarimetric KW - stars: individual: WR 6 KW - stars: magnetic field KW - stars: variables: general KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw558 SN - 0035-8711 SN - 1365-2966 VL - 458 SP - 3381 EP - 3393 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Fossati, Luca A1 - Castro, Norberto A1 - Morel, Thierry A1 - Langer, Norbert A1 - Briquet, Maryline A1 - Carroll, Thorsten Anthony A1 - Hubrig, Swetlana A1 - Nieva, Maria-Fernanda A1 - Oskinova, Lida A1 - Przybilla, Norbert A1 - Schneider, Fabian R. N. A1 - Schoeller, Magnus A1 - Simon Díaz, Sergio A1 - Ilyin, Ilya A1 - de Koter, Alex A1 - Reisenegger, Andreas A1 - Sana, Hugues T1 - B fields in OB stars (BOB): on the detection of weak magnetic fields in the two early B-type stars beta CMa and epsilon CMa Possible lack of a "magnetic desert" in massive stars JF - Astronomy and astrophysics : an international weekly journal N2 - Only a small fraction of massive stars seem to host a measurable structured magnetic field, whose origin is still unknown and whose implications for stellar evolution still need to be assessed. Within the context of the "B fields in OB stars (BOB)" collaboration, we used the HARPSpol spectropolarimeter to observe the early B-type stars beta CMa (HD 44743; B1 II/III) and epsilon CMa (HD 52089; B1.5II) in December 2013 and April 2014. For both stars, we consistently detected the signature of a weak (<30 G in absolute value) longitudinal magnetic field, approximately constant with time. We determined the physical parameters of both stars and characterise their X-ray spectrum. For the beta Cep star beta CMa, our mode identification analysis led to determining a rotation period of 13.6 +/- 1.2 days and of an inclination angle of the rotation axis of 57.6 +/- 1.7 degrees, with respect to the line of sight. On the basis of these measurements and assuming a dipolar field geometry, we derived a best fitting obliquity of about 22 degrees and a dipolar magnetic field strength (B-d) of about 100 G (60 < B-d < 230 G within the 1 sigma level), below what is typically found for other magnetic massive stars. This conclusion is strengthened further by considerations of the star's X-ray spectrum. For epsilon CMa we could only determine a lower limit on the dipolar magnetic field strength of 13 G. For this star, we determine that the rotation period ranges between 1.3 and 24 days. Our results imply that both stars are expected to have a dynamical magnetosphere, so the magnetic field is not able to support a circumstellar disk. We also conclude that both stars are most likely core hydrogen burning and that they have spent more than 2/3 of their main sequence lifetime. A histogram of the distribution of the dipolar magnetic field strength for the magnetic massive stars known to date does not show the magnetic field "desert" observed instead for intermediate-mass stars. The biases involved in the detection of (weak) magnetic fields in massive stars with the currently available instrumentation and techniques imply that weak fields might be more common than currently observed. Our results show that, if present, even relatively weak magnetic fields are detectable in massive stars and that more observational effort is probably still needed to properly access the magnetic field incidence. KW - stars: atmospheres KW - stars: evolution KW - stars: magnetic field KW - stars: individual: epsilon CMa KW - stars: individual: beta CMa KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201424986 SN - 0004-6361 SN - 1432-0746 VL - 574 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Schöller, Markus A1 - Kholtygin, Alexander F. A1 - Tsumura, Hiroki A1 - Hoshino, Akio A1 - Kitamoto, Shunji A1 - Oskinova, Lida A1 - Ignace, Richard A1 - Todt, Helge Tobias A1 - Ilyin, Ilya T1 - New multiwavelength observations of the Of?p star CPD-28 degrees 2561 JF - Monthly notices of the Royal Astronomical Society N2 - A rather strong mean longitudinal magnetic field of the order of a few hundred gauss was detected a few years ago in the Of?p star CPD -28 degrees 2561 using FORS2 (FOcal Reducer low dispersion Spectrograph 2) low-resolution spectropolarimetric observations. In this work, we present additional low-resolution spectropolarimetric observations obtained during several weeks in 2013 December using FORS 2 mounted at the 8-m Antu telescope of the Very Large Telescope (VLT). These observations cover a little less than half of the stellar rotation period of 73.41 d mentioned in the literature. The behaviour of the mean longitudinal magnetic field is consistent with the assumption of a single-wave variation during the stellar rotation cycle, indicating a dominant dipolar contribution to the magnetic field topology. The estimated polar strength of the surface dipole B-d is larger than 1.15 kG. Further, we compared the behaviour of the line profiles of various elements at different rotation phases associated with different magnetic field strengths. The strongest contribution of the emission component is observed at the phases when the magnetic field shows a negative or positive extremum. The comparison of the spectral behaviour of CPD -28 degrees 2561 with that of another Of?p star, HD 148937 of similar spectral type, reveals remarkable differences in the degree of variability between both stars. Finally, we present new X-ray observations obtained with the Suzaku X-ray Observatory. We report that the star is X-ray bright with log L-X/L-bol approximate to -5.7. The low-resolution X-ray spectra reveal the presence of a plasma heated up to 24 MK. We associate the 24 MK plasma in CPD -28 degrees 2561 with the presence of a kG strong magnetic field capable to confine stellar wind. KW - stars: atmospheres KW - stars: individual: CPD-28 degrees 2561 KW - stars: magnetic field KW - stars: mass-loss KW - stars: variables: general KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1093/mnras/stu2516 SN - 0035-8711 SN - 1365-2966 VL - 447 IS - 2 SP - 1885 EP - 1894 PB - Oxford Univ. Press CY - Oxford ER -