TY - THES A1 - Behm, Laura Vera Johanna T1 - Thermoresponsive Zellkultursubstrate für zeitlich-räumlich gesteuertes Auswachsen neuronaler Zellen T1 - Thermoresponsive cell culture substrates for spatio-temporal controlled outgrowth of neuronal cells N2 - Ein wichtiges Ziel der Neurowissenschaften ist das Verständnis der komplexen und zugleich faszinierenden, hochgeordneten Vernetzung der Neurone im Gehirn, welche neuronalen Prozessen, wie zum Beispiel dem Wahrnehmen oder Lernen wie auch Neuropathologien zu Grunde liegt. Für verbesserte neuronale Zellkulturmodelle zur detaillierten Untersuchung dieser Prozesse ist daher die Rekonstruktion von geordneten neuronalen Verbindungen dringend erforderlich. Mit Oberflächenstrukturen aus zellattraktiven und zellabweisenden Beschichtungen können neuronale Zellen und ihre Neuriten in vitro strukturiert werden. Zur Kontrolle der neuronalen Verbindungsrichtung muss das Auswachsen der Axone zu benachbarten Zellen dynamisch gesteuert werden, zum Beispiel über eine veränderliche Zugänglichkeit der Oberfläche. In dieser Arbeit wurde untersucht, ob mit thermoresponsiven Polymeren (TRP) beschichtete Zellkultursubstrate für eine dynamische Kontrolle des Auswachsens neuronaler Zellen geeignet sind. TRP können über die Temperatur von einem zellabweisenden in einen zellattraktiven Zustand geschaltet werden, womit die Zugänglichkeit der Oberfläche für Zellen dynamisch gesteuert werden kann. Die TRP-Beschichtung wurde mikrostrukturiert, um einzelne oder wenige neuronale Zellen zunächst auf der Oberfläche anzuordnen und das Auswachsen der Zellen und Neuriten über definierte TRP-Bereiche in Abhängigkeit der Temperatur zeitlich und räumlich zu kontrollieren. Das Protokoll wurde mit der neuronalen Zelllinie SH-SY5Y etabliert und auf humane induzierte Neurone übertragen. Die Anordnung der Zellen konnte bei Kultivierung im zellabweisenden Zustand des TRPs für bis zu 7 Tage aufrecht erhalten werden. Durch Schalten des TRPs in den zellattraktiven Zustand konnte das Auswachsen der Neuriten und Zellen zeitlich und räumlich induziert werden. Immunozytochemische Färbungen und Patch-Clamp-Ableitungen der Neurone demonstrierten die einfache Anwendbarkeit und Zellkompatibilität der TRP-Substrate. Eine präzisere räumliche Kontrolle des Auswachsens der Zellen sollte durch lokales Schalten der TRP-Beschichtung erreicht werden. Dafür wurden Mikroheizchips mit Mikroelektroden zur lokalen Jouleschen Erwärmung der Substratoberfläche entwickelt. Zur Evaluierung der generierten Temperaturprofile wurde eine Temperaturmessmethode entwickelt und die erhobenen Messwerte mit numerisch simulierten Werten abgeglichen. Die Temperaturmessmethode basiert auf einfach zu applizierenden Sol-Gel-Schichten, die den temperatursensitiven Fluoreszenzfarbstoff Rhodamin B enthalten. Sie ermöglicht oberflächennahe Temperaturmessungen in trockener und wässriger Umgebung mit hoher Orts- und Temperaturauflösung. Numerische Simulationen der Temperaturprofile korrelierten gut mit den experimentellen Daten. Auf dieser Basis konnten Geometrie und Material der Mikroelektroden hinsichtlich einer lokal stark begrenzten Temperierung optimiert werden. Ferner wurden für die Kultvierung der Zellen auf den Mikroheizchips eine Zellkulturkammer und Kontaktboard für die elektrische Kontaktierung der Mikroelektroden geschaffen. Die vorgestellten Ergebnisse demonstrieren erstmalig das enorme Potential thermoresponsiver Zellkultursubstrate für die zeitlich und räumlich gesteuerte Formation geordneter neuronaler Verbindungen in vitro. Zukünftig könnte dies detaillierte Studien zur neuronalen Informationsverarbeitung oder zu Neuropathologien an relevanten, humanen Zellmodellen ermöglichen. N2 - An important goal of neurosciences is to understand the fascinating, complex and highly ordered neuronal circuits of the brain that are underlying important neuronal processes such as learning and memory, as well as neuropathologies. For detailed studies of these processes improved neuronal cell culture models that allow a reconstruction of ordered neuronal connections are crucial. Neuronal cells can be patterned in vitro with structured surface coatings of cell repellent and cell attractive substances. For controlling also the direction of neuronal cell connections the outgrowth of the axons towards neighbouring cells needs to be dynamically controlled, which can be achieved for example by surface structures that can be changed due to switchable surface properties. The main goal of this work was to explore if cell culture substrates with coatings of thermoresponsive polymer (TRP) are suitable for dynamically controlling the outgrowth of neuronal cells. TRPs can be switched via temperature between a cell repellent and a cell attractive state, which enables a dynamic change of surface properties. The TRP coating was microstructured in order to pattern neuronal cells and to spatio-temporally control the outgrowth of cells and neurites across defined TRP-coated areas in dependence of the temperature. The protocol was established with the neuronal cell line SH-SY5Y and transferred to human induced neuronal cells. The cell patterns could be maintained for up to 7 days of cultivation when the TRP was kept in the cell repellent state. By switching the TRP to the cell attractive state the outgrowth of neurites and cells was induced at defined time points and areas. Immunocytochemical staining and patch-clamp recordings of the neurons demonstrated the cell compatibility and easy applicability of these TRP-substrates. A more precise spatial control of the outgrowth of cells should be further achieved by local switching of the TRP-coating. Therefore, microheaters comprising microelectrodes were developed for locally heating the substrate surface. For evaluation of the generated temperature profiles a thermometry method was developed and the values obtained were correlated with numerically simulated data. The thermometry method is based on easily applicable sol-gel-films containing the temperature-sensitive fluorophore Rhodamine B. It allows temperature measurements close to the surface under both dry and liquid conditions with high resolution regarding space (lower µm-range) and temperature (≤ 1°C). Numerical simulations of the temperature profiles correlated well with experimental data. On this basis geometry and material of the microelectrodes were optimized with regard to locally restricted temperature changes. Furthermore, a chip environment for cultivating the cells on the microheater chips was developed comprising a cell culture chamber and a contact board for electrically contacting the microelectrodes. The results presented in this work demonstrate for the first time the great potential of thermoresponsive cell culture substrates for a spatio-temporally controlled formation of neuronal connections in vitro. In future this could facilitate detailed studies of information processing in neuronal networks or of neuropathologies using relevant human neuronal cell models. KW - neuronale Netzwerke KW - Mikrostrukturierung KW - Neuritenwachstum KW - thermoresponsive Polymere KW - Lab-on-a-chip KW - Rhodamin B KW - Thermometrie KW - Mikroheizung KW - Oberflächentemperatur KW - Sol-Gel KW - Zelladhäsionskontrolle KW - neuronal networks KW - microstructures KW - neurite outgrowth KW - thermoresponsive polymers KW - lab-on-a-chip KW - Rhodamine B KW - thermometry KW - microheating KW - surface temperature KW - sol-gel KW - cell adhesion control Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436196 ER - TY - THES A1 - Göbel, Ronald T1 - Hybridmaterialien aus mesoporösen Silica und ionischen Flüssigkeiten T1 - Hybrid materials of mesoporous silica and ionic liquids N2 - Die vorliegende Arbeit beschäftigt sich mit der Synthese und Charakterisierung mesoporöser monolithischer Silica und deren Hybridmaterialien mit Ionischen Flüssigkeiten (ILs, ionic liquids). Zur Synthese der Silicaproben wurde ein Sol-Gel-Verfahren, ausgehend von einer Präkursorverbindung wie Tetramethylorthosilicat angewendet. Der Katalysator mit der geringsten Basizität führte zum Material mit der kleinsten Porengröße und der größten spezifischen Oberfläche. Eine Kombination von porösen Silica mit ILs führt zur Materialklasse der Silica-Ionogele. Diese Hybridmaterialien verbinden die Eigenschaften eines porösen Festkörpers mit denen einer IL (Leitfähigkeit, weites elektrochemisches Fenster, gute thermische Stabilität) und bieten vielfältige Einsatzmöglichkeiten z.B. in der Katalyse- Solar- und Sensortechnik. Um diese Materialien für ihren Verwendungszweck zu optimieren, bedarf es deren umfassenden Charakterisierung. Daher wurde in der vorliegenden Arbeit das thermische Verhalten von Silica-Ionogelen unter Verwendung verschiedener 1-Ethyl-3-methylimidazolium [Emim]-basierter ILs untersucht. Interessanterweise zeigen die untersuchten ILs deutliche Änderungen in ihrem thermischen Verhalten, wenn diese in porösen Materialien eingeschlossen werden (Confinement). Während sich die untersuchten reinen ILs durch klar unterscheidbare Phasenübergänge auszeichnen, konnten für die entsprechenden Hybridmaterialien deutlich schwächer ausgeprägte Übergänge beobachtet werden. Einzelne Phasenübergänge wurden unterdrückt (Glas- und Kristallisationsübergänge), während z.B. Schmelzübergänge in verbreiterten Temperaturbereichen, zum Teil als einzeln getrennte Schmelzpeaks beobachtet wurden. Diese Untersuchungen belegen deutliche Eigenschaftsänderungen der ILs in eingeschränkten Geometrien. Über Festkörper-NMR-Spektroskopie konnte außerdem gezeigt werden, daß die ILs in den mesoporösen Silicamaterialien eine unerwartet hohe Mobilität aufweisen. Die ILs können als quasi-flüssig bezeichnet werden und zeigen die nach bestem Wissen höchste Mobilität, die bisher für vergleichbare Hybridmaterialien beobachtet wurde. Durch Verwendung von funktionalisierten Präkursoren, sowie der Wahl der Reaktionsbedingungen, kann die Oberfläche der Silicamaterialien chemisch funktionalisiert werden und damit die Materialeigenschaften in der gewünschten Weise beeinflußt werden. In der vorliegenden Arbeit wurde der Einfluß der Oberflächenfunktionalität auf das thermische Verhalten hin untersucht. Dazu wurden zwei verschiedene Möglichkeiten der Funktionalisierung angewendet und miteinander verglichen. Bei der in-situ-Funktionalisierung wird die chemische Funktionalität während der Sol-Gel-Synthese über ein entsprechend funktionalisiertes Silan mit in das Silicamaterial einkondensiert. Eine postsynthetische Funktionalisierung erfolgt durch Reaktion der Endgruppen eines Silicamaterials mit geeigneten Reaktionspartnern. Um den Einfluß der physikalischen Eigenschaften der Probe auf die Reaktion zu untersuchen, wurden pulverisierte und monolithische Silicamaterialien miteinander verglichen. Im letzten Teil der Arbeit wurde die Vielfältigkeit, mit der Silicamaterialien postsynthetisch funktionalisiert werden können demonstriert. Durch die Kenntnis von Struktur-Eigenschaftsbeziehungen können die Eigenschaften von Silica-Ionogelen durch die geeignete Kombination von fester und mobiler Phase in der gewünschten Weise verändert werden. Die vorliegende Arbeit soll einen Beitrag zur Untersuchung dieser Beziehungen leisten, um das Potential dieser interessanten Materialien für Anwendungen nutzen zu können. N2 - This work describes the synthesis and characterization of mesoporous monolithic silica and its hybrid materials with ionic liquids (ILs). For synthesis of the silica samples a sol-gel method was used. The catalyst with the weakest basicity leads to the material with the smallest pore size and the largest specific surface area. Combination of porous silica with ILs yields silica-ionogels. These hybrid materials combine the properties of porous solids with the properties of ILs (which is e.g. high conductivity, wide electrochemical stability window, and good thermal stability) and therefore offer a variety of possible applications like catalysis, solar and sensing. To optimize these materials for specific applications there is a need to understand their structure-composition-property relations. For this reason the thermal behavior of silica-ionogels was studied using different 1-ethyl-3-methylimidazolium [Emim]-based ILs. Interestingly the ILs show a clear change in their thermal behavior upon confinement in porous silica. Whereas the pure ILs show distinct phase transitions, the hybrid materials exhibit considerably weaker phase transitions. Phase transitions are suppressed (glass- and crystallization phase transitions); melting transitions show multiple melting peaks. Furthermore solid-state NMR also shows that ILs in mesoporous silica exhibit unusual high mobility. The confined ILs can therefore be classified as quasi-liquid and represents to our best knowledge the highest mobility observed so far in ionogels. By using functionalized silane precursors and different reaction conditions the silica surface was chemically functionalized which further changes the material properties. In a final approach a post-synthetic functionalization was performed by reaction of the selected groups of a silica material with suitable reactants. To study the effect of the physical appearance on the characteristics of the final material, powdered and monolithic samples were studied. In the last part of the work the versatility of post-synthetic silica functionalization was demonstrated. The current work contributes to a better understanding of structure-property correlations, to improve the potential of these interesting materials for possible applications. KW - Silica KW - ionische Flüssigkeiten KW - mesoporös KW - Hybridmaterialien KW - Sol-Gel KW - silica KW - ionic liquids KW - mesoporous KW - hybrid materials KW - sol-gel Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-54022 ER -