TY - GEN A1 - Abdalla, Hassan E. A1 - Adam, Remi A1 - Aharonian, Felix A. A1 - Benkhali, Faical Ait A1 - Angüner, Ekrem Oǧuzhan A1 - Arakawa, Masanori A1 - Arcaro, C A1 - Armand, Catherine A1 - Armstrong, T. A1 - Egberts, Kathrin T1 - Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1202 KW - BL Lacertae objects: individual KW - galaxies: high-redshift KW - gamma-rays: general KW - Resolved and unresolved sources as a function of wavelength Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526000 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber JF - Solar RRL N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 VL - 4 IS - 7 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1197 KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525668 SN - 1866-8372 IS - 7 ER - TY - JOUR A1 - Smirnov, Artem G. A1 - Kronberg, Elena A. A1 - Daly, Patrick W. A1 - Aseev, Nikita A1 - Shprits, Yuri Y. A1 - Kellerman, Adam C. T1 - Adiabatic Invariants Calculations for Cluster Mission: A Long-Term Product for Radiation Belts Studies JF - Journal of Geophysical Research: Space Physics N2 - The Cluster mission has produced a large data set of electron flux measurements in the Earth's magnetosphere since its launch in late 2000. Electron fluxes are measured using Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector as a function of energy, pitch angle, spacecraft position, and time. However, no adiabatic invariants have been calculated for Cluster so far. In this paper we present a step-by-step guide to calculations of adiabatic invariants and conversion of the electron flux to phase space density (PSD) in these coordinates. The electron flux is measured in two RAPID/IES energy channels providing pitch angle distribution at energies 39.2-50.5 and 68.1-94.5 keV in nominal mode since 2004. A fitting method allows to expand the conversion of the differential fluxes to the range from 40 to 150 keV. Best data coverage for phase space density in adiabatic invariant coordinates can be obtained for values of second adiabatic invariant, K, similar to 10(2), and values of the first adiabatic invariant mu in the range approximate to 5-20 MeV/G. Furthermore, we describe the production of a new data product "LSTAR," equivalent to the third adiabatic invariant, available through the Cluster Science Archive for years 2001-2018 with 1-min resolution. The produced data set adds to the availability of observations in Earth's radiation belts region and can be used for long-term statistical purposes. KW - L-Asterisk KW - magnetosphere KW - electrons KW - model Y1 - 2019 VL - 125 IS - 2 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Smirnov, Artem G. A1 - Kronberg, Elena A. A1 - Daly, Patrick W. A1 - Aseev, Nikita A1 - Shprits, Yuri Y. A1 - Kellerman, Adam C. T1 - Adiabatic Invariants Calculations for Cluster Mission: A Long-Term Product for Radiation Belts Studies T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Cluster mission has produced a large data set of electron flux measurements in the Earth's magnetosphere since its launch in late 2000. Electron fluxes are measured using Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector as a function of energy, pitch angle, spacecraft position, and time. However, no adiabatic invariants have been calculated for Cluster so far. In this paper we present a step-by-step guide to calculations of adiabatic invariants and conversion of the electron flux to phase space density (PSD) in these coordinates. The electron flux is measured in two RAPID/IES energy channels providing pitch angle distribution at energies 39.2-50.5 and 68.1-94.5 keV in nominal mode since 2004. A fitting method allows to expand the conversion of the differential fluxes to the range from 40 to 150 keV. Best data coverage for phase space density in adiabatic invariant coordinates can be obtained for values of second adiabatic invariant, K, similar to 10(2), and values of the first adiabatic invariant mu in the range approximate to 5-20 MeV/G. Furthermore, we describe the production of a new data product "LSTAR," equivalent to the third adiabatic invariant, available through the Cluster Science Archive for years 2001-2018 with 1-min resolution. The produced data set adds to the availability of observations in Earth's radiation belts region and can be used for long-term statistical purposes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1192 KW - L-Asterisk KW - magnetosphere KW - electrons KW - model Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523915 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New Journal of Physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 VL - 22 IS - 2 PB - Springer Science CY - New York ER - TY - GEN A1 - Munyaev, Vyacheslav A1 - Smirnov, Lev A. A1 - Kostin, Vasily A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1188 KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto model KW - noisy systems Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524261 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Keles, Engin A1 - Kitzmann, Daniel A1 - Mallonn, Matthias A1 - Alexoudi, Xanthippi A1 - Fossati, Luca A1 - Pino, Lorenzo A1 - Seidel, Julia Victoria A1 - Caroll, Thorsten A. A1 - Steffen, M. A1 - Ilyin, Ilya A1 - Poppenhäger, Katja A1 - Strassmeier, Klaus G. A1 - von Essen, Carolina A1 - Nascimbeni, Valerio A1 - Turner, Jake D. T1 - Probing the atmosphere of HD189733b with the Na i and K i lines JF - Monthly Notices of the Royal Astronomical Society N2 - High spectral resolution transmission spectroscopy is a powerful tool to characterize exoplanet atmospheres. Especially for hot Jupiters, this technique is highly relevant, due to their high-altitude absorption, e.g. from resonant sodium (Na i) and potassium (K i) lines. We resolve the atmospheric K i absorption on HD189733b with the aim to compare the resolved K i line and previously obtained high-resolution Na i-D line observations with synthetic transmission spectra. The line profiles suggest atmospheric processes leading to a line broadening of the order of ∼10 km/s for the Na i-D lines and only a few km/s for the K i line. The investigation hints that either the atmosphere of HD189733b lacks a significant amount of K i or the alkali lines probe different atmospheric regions with different temperature, which could explain the differences we see in the resolved absorption lines. Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa2435 VL - 498 IS - 1 SP - 1033 PB - Oxford Univ. Press CY - Oxford ER - TY - BOOK A1 - Brehmer, Ludwig T1 - 70-jähriges-Jubiläum der Gründung der Hochschul-Biologie und des Botanischen Gartens der Pädagogischen Hochschule Potsdam BT - eine administrative und wissenschafts-politische Retrospektive und Würdigung der Gründer T3 - Die Hochschulstadt in Sanssouci ; Band 8 Y1 - 2020 SN - 978-3-9821787-3-8 PB - Eigenverlag des Verfassers Brehmer CY - Schwielowsee ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Sposini, Vittoria A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Seno, Flavio T1 - Exact distributions of the maximum and range of random diffusivity processes JF - New Journal of Physics N2 - We study the extremal properties of a stochastic process xt defined by the Langevin equation ẋₜ =√2Dₜ ξₜ, in which ξt is a Gaussian white noise with zero mean and Dₜ is a stochastic‘diffusivity’, defined as a functional of independent Brownian motion Bₜ.We focus on threechoices for the random diffusivity Dₜ: cut-off Brownian motion, Dₜt ∼ Θ(Bₜ), where Θ(x) is the Heaviside step function; geometric Brownian motion, Dₜ ∼ exp(−Bₜ); and a superdiffusive process based on squared Brownian motion, Dₜ ∼ B²ₜ. For these cases we derive exact expressions for the probability density functions of the maximal positive displacement and of the range of the process xₜ on the time interval ₜ ∈ (0, T).We discuss the asymptotic behaviours of the associated probability density functions, compare these against the behaviour of the corresponding properties of standard Brownian motion with constant diffusivity (Dₜ = D0) and also analyse the typical behaviour of the probability density functions which is observed for a majority of realisations of the stochastic diffusivity process. KW - random diffusivity KW - extremal values KW - maximum and range KW - diffusion KW - Brownian motion Y1 - 2021 U6 - https://doi.org/10.1088/1367-2630/abd313 SN - 1367-2630 VL - 23 PB - Dt. Physikalische Ges. CY - Bad Honnef ER -