TY - JOUR A1 - Yang, Jie A1 - Gühr, Markus A1 - Vecchione, Theodore A1 - Robinson, Matthew Scott A1 - Li, Renkai A1 - Hartmann, Nick A1 - Shen, Xiaozhe A1 - Coffee, Ryan A1 - Corbett, Jeff A1 - Fry, Alan A1 - Gaffney, Kelly A1 - Gorkhover, Tais A1 - Hast, Carsten A1 - Jobe, Keith A1 - Makasyuk, Igor A1 - Reid, Alexander A1 - Robinson, Joseph A1 - Vetter, Sharon A1 - Wang, Fenglin A1 - Weathersby, Stephen A1 - Yoneda, Charles A1 - Wang, Xijie A1 - Centurion, Martin T1 - Femtosecond gas phase electron diffraction with MeV electrons JF - Faraday discussions N2 - We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution. Y1 - 2016 U6 - https://doi.org/10.1039/c6fd00071a SN - 1359-6640 SN - 1364-5498 VL - 194 SP - 563 EP - 581 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yang, Jie A1 - Gühr, Markus A1 - Vecchione, Theodore A1 - Robinson, Matthew Scott A1 - Li, Renkai A1 - Hartmann, Nick A1 - Shen, Xiaozhe A1 - Coffee, Ryan A1 - Corbett, Jeff A1 - Fry, Alan A1 - Gaffney, Kelly A1 - Gorkhover, Tais A1 - Hast, Carsten A1 - Jobe, Keith A1 - Makasyuk, Igor A1 - Reid, Alexander A1 - Robinson, Joseph A1 - Vetter, Sharon A1 - Wang, Fenglin A1 - Weathersby, Stephen A1 - Yoneda, Charles A1 - Centurion, Martin A1 - Wang, Xijie T1 - Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses JF - Nature Communications N2 - Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 angstrom) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions. Y1 - 2016 U6 - https://doi.org/10.1038/ncomms11232 SN - 2041-1723 VL - 7 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Yang, Jie A1 - Guehr, Markus A1 - Vecchione, Theodore A1 - Robinson, Matthew Scott A1 - Li, Renkai A1 - Hartmann, Nick A1 - Shen, Xiaozhe A1 - Coffee, Ryan A1 - Corbett, Jeff A1 - Fry, Alan A1 - Gaffney, Kelly A1 - Gorkhover, Tais A1 - Hast, Carsten A1 - Jobe, Keith A1 - Makasyuk, Igor A1 - Reid, Alexander A1 - Robinson, Joseph A1 - Vetter, Sharon A1 - Wang, Fenglin A1 - Weathersby, Stephen A1 - Yoneda, Charles A1 - Wang, Xijie A1 - Centurion, Martin T1 - Femtosecond gas phase electron diffraction with MeV electrons N2 - We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 326 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394989 ER - TY - JOUR A1 - Yang, Jie A1 - Guehr, Markus A1 - Shen, Xiaozhe A1 - Li, Renkai A1 - Vecchione, Theodore A1 - Coffee, Ryan A1 - Corbett, Jeff A1 - Fry, Alan A1 - Hartmann, Nick A1 - Hast, Carsten A1 - Hegazy, Kareem A1 - Jobe, Keith A1 - Makasyuk, Igor A1 - Robinson, Joseph A1 - Robinson, Matthew Scott A1 - Vetter, Sharon A1 - Weathersby, Stephen A1 - Yoneda, Charles A1 - Wang, Xijie A1 - Centurion, Martin T1 - Diffractive Imaging of Coherent Nuclear Motion in Isolated Molecules JF - Physical review letters N2 - Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 angstrom and temporal resolution of 230 fs full width at half maximum. The method is not only sensitive to the position but also the shape of the nuclear wave packet. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevLett.117.153002 SN - 0031-9007 SN - 1079-7114 VL - 117 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Loebner, Sarah A1 - Papke, Thomas A1 - Sava, Elena A1 - Hurduc, Nicolae A1 - Santer, Svetlana T1 - A comparative study of photoinduced deformation in azobenzene containing polymer films JF - Soft matter N2 - In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 degrees C, 87 degrees C and 95 degrees C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport. Y1 - 2016 U6 - https://doi.org/10.1039/c6sm00029k SN - 1744-683X SN - 1744-6848 VL - 12 SP - 2593 EP - 2603 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Xue, Zhike A1 - Yan, Xiaoli A1 - Cheng, Xin A1 - Yang, Liheng A1 - Su, Yingna A1 - Kliem, Bernhard A1 - Zhang, Jun A1 - Liu, Zhong A1 - Bi, Yi A1 - Xiang, Yongyuan A1 - Yang, Kai A1 - Zhao, Li T1 - Observing the release of twist by magnetic reconnection in a solar filament eruption JF - Nature Communications N2 - Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. Y1 - 2016 U6 - https://doi.org/10.1038/ncomms11837 SN - 2041-1723 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Xu, Siyao A1 - Yan, Huirong A1 - Lazarian, A. T1 - DAMPING OF MAGNETOHYDRODYNAMIC TURBULENCE IN PARTIALLY IONIZED PLASMA: IMPLICATIONS FOR COSMIC RAY PROPAGATION JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified. KW - cosmic rays KW - magnetohydrodynamics (MHD) KW - turbulence Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/826/2/166 SN - 0004-637X SN - 1538-4357 VL - 826 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Lühr, Hermann T1 - The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities JF - Space Weather: The International Journal of Research and Applications N2 - In this study we investigated conditions for loss of GPS signals observed by the Swarm satellites during a 2 year period, from December 2013 to November 2015. Our result shows that the Swarm satellites encountered most of the total loss of GPS signal at the ionization anomaly crests, between +/- 5 degrees and +/- 20 degrees magnetic latitude, forming two bands along the magnetic equator, and these low-latitude events mainly appear around postsunset hours from 19: 00 to 22: 00 local time. By further checking the in situ electron density measurements of Swarm, we found that practically, all the total loss of GPS signal events at low latitudes are related to equatorial plasma irregularities (EPIs) that show absolute density depletions larger than 10 x 10(11) m(-3); then, the Swarm satellites encountered for up to 95% loss of GPS signal for at least one channel and up to 45% tracked less than four GPS satellites (making precise orbit determination impossible). For those EPIs with density depletions less than 10 x 10(11) m(-3), the chance of tracked GPS signals less than four reduces to only 1.0%. Swarm also observed total loss of all GPS signal at high latitudes, mainly around local noon, and these events are related to large spatial density gradients due to polar patches or increased geomagnetic/auroral activities. We further found that the loss of GPS signals were less frequent after appropriate settings of the Swarm GPS receivers had been updated. However, the more recent period of the mission, e.g., after the GPS receiver settings have been updated, also coincides with less severe electron density depletions due to the declining solar cycle, making GPS loss events less likely. We conclude that both lower electron density gradients and appropriate GPS receiver settings reduce the probability for Swarm satellites loss of GPS signals. Y1 - 2016 U6 - https://doi.org/10.1002/2016SW001439 SN - 1542-7390 VL - 14 SP - 563 EP - 577 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Wuesthoff, Martin A1 - Sohl, F. T1 - Obliquity tides have an impact in diurnal tidal stresses on the Moon. T2 - Macromolecules : a publication of the American Chemical Society Y1 - 2016 SN - 1086-9379 SN - 1945-5100 VL - 51 SP - A672 EP - A672 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wisotzki, Lutz A1 - Bacon, Roland A1 - Blaizot, J. A1 - Brinchmann, Jarle A1 - Herenz, Edmund Christian A1 - Schaye, Joop A1 - Bouche, Nicolas A1 - Cantalupo, Sebastiano A1 - Contini, Thierry A1 - Carollo, C. M. A1 - Caruana, Joseph A1 - Courbot, J. -B. A1 - Emsellem, E. A1 - Kamann, S. A1 - Kerutt, Josephine Victoria A1 - Leclercq, F. A1 - Lilly, S. J. A1 - Patricio, V. A1 - Sandin, C. A1 - Steinmetz, Matthias A1 - Straka, Lorrie A. A1 - Urrutia, Tanya A1 - Verhamme, A. A1 - Weilbacher, Peter Michael A1 - Wendt, Martin T1 - Extended Lyman alpha haloes around individual high-redshift galaxies revealed by MUSE JF - Science N2 - We report the detection of extended Ly alpha emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1 sigma) of similar to 1 x 10(-19) erg s(-1) cm(-2) arcsec(-2) in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Ly alpha-emitting, but mostly continuum-faint (m(AB) greater than or similar to 27) galaxies. In most objects the Ly alpha emission is considerably more extended than the UV continuum light. While five of the faintest galaxies in the sample show no significantly detected Ly alpha haloes, the derived upper limits suggest that this is due to insufficient S/N. Ly alpha haloes therefore appear to be ubiquitous even for low-mass (similar to 10(8)-10(9) M-circle dot) star-forming galaxies at z > 3. We decompose the Ly alpha emission of each object into a compact component tracing the UV continuum and an extended halo component, and infer sizes and luminosities of the haloes. The extended Ly alpha emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor similar to 5, than Ly alpha haloes around low-redshift star-forming galaxies. Between similar to 40% and greater than or similar to 90% of the observed Ly alpha flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Ly alpha halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3. KW - galaxies: high-redshift KW - galaxies: evolution KW - galaxies: formation KW - cosmology: observations KW - intergalactic medium Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527384 SN - 1432-0746 VL - 587 PB - EDP Sciences CY - Les Ulis ER -