TY - JOUR A1 - Prol, Fabricio S. A1 - Smirnov, Artem G. A1 - Hoque, M. Mainul A1 - Shprits, Yuri T1 - Combined model of topside ionosphere and plasmasphere derived from radio-occultation and Van Allen Probes data JF - Scientific reports N2 - In the last years, electron density profile functions characterized by a linear dependence on the scale height showed good results when approximating the topside ionosphere. The performance above 800 km, however, is not yet well investigated. This study investigates the capability of the semi-Epstein functions to represent electron density profiles from the peak height up to 20,000 km. Electron density observations recorded by the Van Allen Probes were used to resolve the scale height dependence in the plasmasphere. It was found that the linear dependence of the scale height in the topside ionosphere cannot be directly used to extrapolate profiles above 800 km. We find that the dependence of scale heights on altitude is quadratic in the plasmasphere. A statistical model of the scale heights is therefore proposed. After combining the topside ionosphere and plasmasphere by a unified model, we have obtained good estimations not only in the profile shapes, but also in the Total Electron Content magnitude and distributions when compared to actual measurements from 2013, 2014, 2016 and 2017. Our investigation shows that Van Allen Probes can be merged to radio-occultation data to properly represent the upper ionosphere and plasmasphere by means of a semi-Epstein function. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-13302-1 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Clark, Oliver J. A1 - Wadgaonkar, Indrajit A1 - Freyse, Friedrich A1 - Springholz, Gunther A1 - Battiato, Marco A1 - Sanchez-Barriga, Jaime T1 - Ultrafast thermalization pathways of excited bulk and surface states in the ferroelectric rashba semiconductor GeTe JF - Advanced materials N2 - A large Rashba effect is essential for future applications in spintronics. Particularly attractive is understanding and controlling nonequilibrium properties of ferroelectric Rashba semiconductors. Here, time- and angle-resolved photoemission is utilized to access the ultrafast dynamics of bulk and surface transient Rashba states after femtosecond optical excitation of GeTe. A complex thermalization pathway is observed, wherein three different timescales can be clearly distinguished: intraband thermalization, interband equilibration, and electronic cooling. These dynamics exhibit an unconventional temperature dependence: while the cooling phase speeds up with increasing sample temperature, the opposite happens for interband thermalization. It is demonstrated how, due to the Rashba effect, an interdependence of these timescales on the relative strength of both electron-electron and electron-phonon interactions is responsible for the counterintuitive temperature dependence, with spin-selection constrained interband electron-electron scatterings found both to dominate dynamics away from the Fermi level, and to weaken with increasing temperature. These findings are supported by theoretical calculations within the Boltzmann approach explicitly showing the opposite behavior of all relevant electron-electron and electron-phonon scattering channels with temperature, thus confirming the microscopic mechanism of the experimental findings. The present results are important for future applications of ferroelectric Rashba semiconductors and their excitations in ultrafast spintronics. KW - ferroelectric semiconductors KW - Rashba effect KW - spin- and angle-resolved photoemission KW - spin-orbit coupling KW - time-resolved photoemission KW - ultrafast dynamics Y1 - 2022 U6 - https://doi.org/10.1002/adma.202200323 SN - 0935-9648 SN - 1521-4095 VL - 34 IS - 24 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guo, Yingjie A1 - Ni, Binbin A1 - Fu, Song A1 - Wang, Dedong A1 - Shprits, Yuri A1 - Zhelavskaya, Irina A1 - Feng, Minghang A1 - Guo, Deyu T1 - Identification of controlling geomagnetic and solar wind factors for magnetospheric chorus intensity using feature selection techniques JF - Journal of geophysical research : A, Space physics N2 - Using over-5-year EMFISIS wave measurements from Van Allen Probes, we present a detailed survey to identify the controlling factors among the geomagnetic indices and solar wind parameters for the 1-min root mean square amplitudes of lower band chorus (LBC) and upper band chorus (UBC). A set of important features are automatically determined by feature selection techniques, namely, Random Forest and Maximum Relevancy Minimum Redundancy. Our analysis results indicate the AE index with zero-time-delay dominates the intensity evolution of LBC and UBC, consistent with the evidence that chorus waves prefer to occur and amplify during enhanced substorm periods. Regarding solar wind parameters, solar wind speed and IMF B-z are identified as the controlling factors for chorus wave intensity. Using the combination of all these important features, a predictive neural network model of chorus wave intensity is established to reconstruct the temporal variations of chorus wave intensity, for which application of Random Forest produces the overall best performance. Plain Language Summary Whistler mode chorus waves are electromagnetic waves observed in the low-density region near the geomagnetic equator outside the plasmapause. The dynamics of Earth's radiation belts are largely influenced by chorus waves owing to their dual contributions to both radiation belt electron acceleration and loss. In this study, we use feature selection techniques to identify the controlling geomagnetic and solar wind factors for magnetospheric chorus waves. Feature selection techniques implement the processes which can select the features most influential to the output. In this study, the inputs are geomagnetic indices and solar wind parameters and the output is the chorus wave intensity. The results indicate that AE index with zerotime delay dominates the chorus wave intensity. Furthermore, solar wind speed and IMF B-z are identified as the most important solar wind drivers for chorus wave intensity. On basis of the combination of all these important geomagnetic and solar wind controlling factors, we develop a neural network model of chorus wave intensity, and find that the model with the inputs identified using the Random Forest method produces the overall best performance. Y1 - 2021 U6 - https://doi.org/10.1029/2021JA029926 SN - 2169-9380 SN - 2169-9402 VL - 127 IS - 1 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Diercke, Andrea A1 - Kuckein, Christoph A1 - Cauley, Paul Wilson A1 - Poppenhäger, Katja A1 - Alvarado-Gómez, Julián David A1 - Dineva, Ekaterina Ivanova A1 - Denker, Carsten T1 - Solar H alpha excess during Solar Cycle 24 from full-disk filtergrams of the Chromospheric Telescope JF - Astronomy and astrophysics : an international weekly journal N2 - Context The chromospheric H alpha spectral line is a strong line in the spectrum of the Sun and other stars. In the stellar regime, this spectral line is already used as a powerful tracer of stellar activity. For the Sun, other tracers, such as Ca II K, are typically used to monitor solar activity. Nonetheless, the Sun is observed constantly in H alpha with globally distributed ground-based full-disk imagers. Aims The aim of this study is to introduce the imaging H alpha excess and deficit as tracers of solar activity and compare them to other established indicators. Furthermore, we investigate whether the active region coverage fraction or the changing H alpha excess in the active regions dominates temporal variability in solar H alpha observations. Methods We used observations of full-disk H alpha filtergrams of the Chromospheric Telescope and morphological image processing techniques to extract the imaging H alpha excess and deficit, which were derived from the intensities above or below 10% of the median intensity in the filtergrams, respectively. These thresholds allowed us to filter for bright features (plage regions) and dark absorption features (filaments and sunspots). In addition, the thresholds were used to calculate the mean intensity I-mean(E/D) for H alpha excess and deficit regions. We describe the evolution of the H alpha excess and deficit during Solar Cycle 24 and compare it to the mean intensity and other well established tracers: the relative sunspot number, the F10.7 cm radio flux, and the Mg II index. In particular, we tried to determine how constant the H alpha excess and number density of H alpha excess regions are between solar maximum and minimum. The number of pixels above or below the intensity thresholds were used to calculate the area coverage fraction of H alpha excess and deficit regions on the Sun, which was compared to the imaging H alpha excess and deficit and the respective mean intensities averaged for the length of one Carrington rotation. In addition, we present the H alpha excess and mean intensity variation of selected active regions during their disk passage in comparison to the number of pixels of H alpha excess regions. Results. The H alpha excess and deficit follow the behavior of the solar activity over the course of the cycle. They both peak around solar maximum, whereby the peak of the H alpha deficit is shortly after the solar maximum. Nonetheless, the correlation of the monthly averages of the H alpha excess and deficit is high with a Spearman correlation of rho =  0.91. The H alpha excess is closely correlated to the chromospheric Mg II index with a correlation of 0.95. The highest correlation of the H alpha deficit is found with the F10.7 cm radio flux, with a correlation of 0.89, due to their peaks after the solar activity maximum. Furthermore, the H alpha deficit reflects the cyclic behavior of polar crown filaments and their disappearance shortly before the solar maximum. We investigated the mean intensity distribution for H alpha excess regions for solar minimum and maximum. The shape of the distributions for solar minimum and maximum is very similar, but with different amplitudes. Furthermore, we found that the area coverage fraction of H alpha excess regions and the H alpha excess are strongly correlated with an overall Spearman correlation of 0.92. The correlation between the H alpha excess and the mean intensity of H alpha excess regions is 0.75. The correlation of the area coverage fraction and the mean intensity of H alpha excess regions is in general relatively low (rho = 0.45) and only for few active regions is this correlation above 0.7. The weak correlation between the area coverage fraction and mean intensity leaves us pessimistic that the degeneracy between these two quantities can be broken for the modeling of unresolved stellar surfaces. KW - methods: observational KW - Sun: chromosphere KW - Sun: activity KW - Sun: faculae, plages KW - Sun: filaments KW - stars: atmospheres KW - prominences Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202040091 SN - 1432-0746 SN - 0004-6361 VL - 661 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Peng, Junhao A1 - Sandev, Trifce A1 - Kocarev, Ljupco T1 - First encounters on Bethe lattices and Cayley trees JF - Communications in nonlinear science & numerical simulation N2 - In this work we consider the first encounter problems between a fixed and/or mobile target A and a moving trap B on Bethe lattices and Cayley trees. The survival probabilities (SPs) of the target A on the both kinds of structures are considered analytically and compared. On Bethe lattices, the results show that the fixed target will still prolong its survival time, whereas, on Cayley trees, there are some initial positions where the target should move to prolong its survival time. The mean first encounter time (MFET) for mobile target A is evaluated numerically and compared with the mean first passage time (MFPT) for the fixed target A. Different initial settings are addressed and clear boundaries are obtained. These findings are helpful for optimizing the strategy to prolong the survival time of the target or to speed up the search process on Cayley trees, in relation to the target's movement and the initial position configuration of the two walkers. We also present a new method, which uses a small amount of memory, for simulating random walks on Cayley trees. (C) 2020 Elsevier B.V. All rights reserved. KW - Random walks KW - Survival probability KW - Mean first encounter time KW - Bethe KW - lattices KW - Cayley trees Y1 - 2021 U6 - https://doi.org/10.1016/j.cnsns.2020.105594 SN - 1007-5704 SN - 1878-7274 VL - 95 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kaa, Johannes M. A1 - Sternemann, Christian A1 - Appel, Karen A1 - Cerantola, Valerio A1 - Preston, Thomas R. A1 - Albers, Christian A1 - Elbers, Mirko A1 - Libon, Lelia A1 - Makita, Mikako A1 - Pelka, Alexander A1 - Petitgirard, Sylvain A1 - Plückthun, Christian A1 - Roddatis, Vladimir A1 - Sahle, Christoph J. A1 - Spiekermann, Georg A1 - Schmidt, Christian A1 - Schreiber, Anja A1 - Sakrowski, Robin A1 - Tolan, Metin A1 - Wilke, Max A1 - Zastrau, Ulf A1 - Konopkova, Zuzana T1 - Structural and electron spin state changes in an x-ray heated iron carbonate system at the Earth's lower mantle pressures JF - Physical review research N2 - The determination of the spin state of iron-bearing compounds at high pressure and temperature is crucial for our understanding of chemical and physical properties of the deep Earth. Studies on the relationship between the coordination of iron and its electronic spin structure in iron-bearing oxides, silicates, carbonates, iron alloys, and other minerals found in the Earth's mantle and core are scarce because of the technical challenges to simultaneously probe the sample at high pressures and temperatures. We used the unique properties of a pulsed and highly brilliant x-ray free electron laser (XFEL) beam at the High Energy Density (HED) instrument of the European XFEL to x-ray heat and probe samples contained in a diamond anvil cell. We heated and probed with the same x-ray pulse train and simultaneously measured x-ray emission and x-ray diffraction of an FeCO3 sample at a pressure of 51 GPa with up to melting temperatures. We collected spin state sensitive Fe K beta(1,3) fluorescence spectra and detected the sample's structural changes via diffraction, observing the inverse volume collapse across the spin transition. During x-ray heating, the carbonate transforms into orthorhombic Fe4C3O12 and iron oxides. Incipient melting was also observed. This approach to collect information about the electronic state and structural changes from samples contained in a diamond anvil cell at melting temperatures and above will considerably improve our understanding of the structure and dynamics of planetary and exoplanetary interiors. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.033042 SN - 2643-1564 VL - 4 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Kruse, Marlen A1 - Altattan, Basma A1 - Laux, Eva-Maria A1 - Grasse, Nico A1 - Heinig, Lars A1 - Möser, Christin A1 - Smith, David M. A1 - Hölzel, Ralph T1 - Characterization of binding interactions of SARS-CoV-2 spike protein and DNA-peptide nanostructures JF - Scientific reports N2 - Binding interactions of the spike proteins of the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) to a peptide fragment derived from the human angiotensin converting enzyme 2 (hACE2) receptor are investigated. The peptide is employed as capture moiety in enzyme linked immunosorbent assays (ELISA) and quantitative binding interaction measurements that are based on fluorescence proximity sensing (switchSENSE). In both techniques, the peptide is presented on an oligovalent DNA nanostructure, in order to assess the impact of mono- versus trivalent binding modes. As the analyte, the spike protein and several of its subunits are tested as well as inactivated SARS-CoV-2 and pseudo viruses. While binding of the peptide to the full-length spike protein can be observed, the subunits RBD and S1 do not exhibit binding in the employed concentrations. Variations of the amino acid sequence of the recombinant full-length spike proteins furthermore influence binding behavior. The peptide was coupled to DNA nanostructures that form a geometric complement to the trimeric structure of the spike protein binding sites. An increase in binding strength for trimeric peptide presentation compared to single peptide presentation could be generally observed in ELISA and was quantified in switchSENSE measurements. Binding to inactivated wild type viruses could be shown as well as qualitatively different binding behavior of the Alpha and Beta variants compared to the wild type virus strain in pseudo virus models. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-16914-9 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Panchal, Gyanendra A1 - Kojda, Sandrino Danny A1 - Sahoo, Sophia A1 - Bagri, Anita A1 - Kunwar, Hemant Singh A1 - Bocklage, Lars A1 - Panchwanee, Anjali A1 - Sathe, Vasant G. A1 - Fritsch, Katharina A1 - Habicht, Klaus A1 - Choudhary, Ram Janay A1 - Phase, Deodutta M. T1 - Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupled Fe3O4/BaTiO3 (001) heterostructure JF - Physical review : B, Condensed matter and materials physics N2 - We present a study of the control of electric field induced strain on the magnetic and electrical transport properties in a magnetoelastically coupled artificial multiferroic Fe3O4/BaTiO3 heterostructure. In this Fe3O4/BaTiO3 heterostructure, the Fe3O4 thin film is epitaxially grown in the form of bilateral domains, analogous to a-c stripe domains of the underlying BaTiO3(001) substrate. By in situ electric field dependent magnetization measurements, we demonstrate the extrinsic control of the magnetic anisotropy and the characteristic Verwey metal-insulator transition of the epitaxial Fe3O4 thin film in a wide temperature range between 20-300 K, via strain mediated converse magnetoelectric coupling. In addition, we observe strain induced modulations in the magnetic and electrical transport properties of the Fe3O4 thin film across the thermally driven intrinsic ferroelectric and structural phase transitions of the BaTiO3 substrate. In situ electric field dependent Raman measurements reveal that the electric field does not significantly modify the antiphase boundary defects in the Fe3O4 thin film once it is thermodynamically stable after deposition and that the modification of the magnetic properties is mainly caused by strain induced lattice distortions and magnetic anisotropy. These results provide a framework to realize electrical control of the magnetization in a classical highly correlated transition metal oxide. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.105.224419 SN - 2469-9950 SN - 2469-9969 VL - 105 IS - 22 PB - The American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Drozdov, Alexander A1 - Allison, Hayley J. A1 - Shprits, Yuri A1 - Usanova, Maria E. A1 - Saikin, Anthony A1 - Wang, Dedong T1 - Depletions of Multi-MeV Electrons and their association to Minima in Phase Space Density JF - Geophysical research letters N2 - Fast-localized electron loss, resulting from interactions with electromagnetic ion cyclotron (EMIC) waves, can produce deepening minima in phase space density (PSD) radial profiles. Here, we perform a statistical analysis of local PSD minima to quantify how readily these are associated with radiation belt depletions. The statistics of PSD minima observed over a year are compared to the Versatile Electron Radiation Belts (VERB) simulations, both including and excluding EMIC waves. The observed minima distribution can only be achieved in the simulation including EMIC waves, indicating their importance in the dynamics of the radiation belts. By analyzing electron flux depletions in conjunction with the observed PSD minima, we show that, in the heart of the outer radiation belt (L* < 5), on average, 53% of multi-MeV electron depletions are associated with PSD minima, demonstrating that fast localized loss by interactions with EMIC waves are a common and crucial process for ultra-relativistic electron populations. KW - radiation belts KW - EMIC KW - VERB KW - PSD Y1 - 2022 U6 - https://doi.org/10.1029/2021GL097620 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 8 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Search efficiency in the Adam-Delbruck reduction-of-dimensionality scenario versus direct diffusive search JF - New journal of physics : the open-access journal for physics N2 - The time instant-the first-passage time (FPT)-when a diffusive particle (e.g., a ligand such as oxygen or a signalling protein) for the first time reaches an immobile target located on the surface of a bounded three-dimensional domain (e.g., a hemoglobin molecule or the cellular nucleus) is a decisive characteristic time-scale in diverse biophysical and biochemical processes, as well as in intermediate stages of various inter- and intra-cellular signal transduction pathways. Adam and Delbruck put forth the reduction-of-dimensionality concept, according to which a ligand first binds non-specifically to any point of the surface on which the target is placed and then diffuses along this surface until it locates the target. In this work, we analyse the efficiency of such a scenario and confront it with the efficiency of a direct search process, in which the target is approached directly from the bulk and not aided by surface diffusion. We consider two situations: (i) a single ligand is launched from a fixed or a random position and searches for the target, and (ii) the case of 'amplified' signals when N ligands start either from the same point or from random positions, and the search terminates when the fastest of them arrives to the target. For such settings, we go beyond the conventional analyses, which compare only the mean values of the corresponding FPTs. Instead, we calculate the full probability density function of FPTs for both scenarios and study its integral characteristic-the 'survival' probability of a target up to time t. On this basis, we examine how the efficiencies of both scenarios are controlled by a variety of parameters and single out realistic conditions in which the reduction-of-dimensionality scenario outperforms the direct search. KW - first-passage times KW - Adam-Delbruck scenario KW - dimensional reduction KW - bulk KW - and surface diffusion Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac8824 SN - 1367-2630 VL - 24 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER -