TY - JOUR A1 - Corcoran, Michael F. A1 - Nichols, Joy S. A1 - Pablo, Herbert A1 - Shenar, Tomer A1 - Pollock, Andy M. T. A1 - Waldron, Wayne L. A1 - Moffat, Anthony F. J. A1 - Richardson, Noel D. A1 - Russell, Christopher M. P. A1 - Hamaguchi, Kenji A1 - Huenemoerder, David P. A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Naze, Yael A1 - Ignace, Richard A1 - Evans, Nancy Remage A1 - Lomax, Jamie R. A1 - Hoffman, Jennifer L. A1 - Gayley, Kenneth A1 - Owocki, Stanley P. A1 - Leutenegger, Maurice A1 - Gull, Theodore R. A1 - Hole, Karen Tabetha A1 - Lauer, Jennifer A1 - Iping, Rosina C. T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. I. Overview of thr X-Ray spectrum JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (delta Ori Aa1), delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual (Delta Ori) KW - stars: mass-loss KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/132 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hainich, Rainer A1 - Pasemann, Diana A1 - Todt, Helge Tobias A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer T1 - Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past. KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: early-type KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526241 SN - 1432-0746 VL - 581 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Huenemoerder, David P. A1 - Gayley, K. G. A1 - Hamann, Wolf-Rainer A1 - Ignace, R. A1 - Nichols, J. S. A1 - Oskinova, Lida A1 - Pollock, A. M. T. A1 - Schulz, Norbert S. A1 - Shenar, Tomer T1 - Probing Wolf-Rayet winds: Chandra/HETG X-ray spectra of WR 6 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars. KW - stars: individual (WR 6) KW - stars: massive KW - stars: Wolf-Rayet Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/815/1/29 SN - 0004-637X SN - 1538-4357 VL - 815 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Shenar, Tomer A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias T1 - The impact of rotation on the line profiles of Wolf-Rayet stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Massive Wolf-Rayet stars are recognized today to be in a very common, but short, evolutionary phase of massive stars. While our understanding of Wolf-Rayet stars has increased dramatically over the past decades, it remains unclear whether rapid rotators are among them. There are various indications that rapidly rotating Wolf-Rayet stars should exist. Unfortunately, due to their expanding atmospheres, rotational velocities of Wolf-Rayet stars are very difficult to measure. However, recently observed spectra of several Wolf-Rayet stars reveal peculiarly broad and round emission lines. Could these spectra imply rapid rotation? Aims. In this work, we model the effects of rotation on the atmospheres of Wolf-Rayet stars. We further investigate whether the peculiar spectra of five Wolf-Rayet stars may be explained with the help of stellar rotation, infer appropriate rotation parameters, and discuss the implications of our results. Methods. We make use of the Potsdam Wolf-Rayet (PoWR) non-LTE model atmosphere code. Since the observed spectra of WolfRayet stars are mainly formed in their expanding atmospheres, rotation must be accounted for with a 3D integration scheme of the formal integral. For this purpose, we assume a rotational velocity field consisting of an inner co-rotating domain and an outer domain, where the angular momentum is conserved. Results. We find that rotation can reproduce the unique spectra analyzed here. However, the inferred rotational velocities at the stellar surface are large (similar to 200 km s(-1)), and the inferred co-rotation radii (similar to 10R.) suggest the existence of very strong photospheric magnetic fields (similar to 20 kG). KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: magnetic field KW - stars: massive KW - gamma-ray burst: general KW - stars: rotation Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201322496 SN - 0004-6361 SN - 1432-0746 VL - 562 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Hainich, Rainer A1 - Hamann, Wolf-Rainer T1 - The Wolf-Rayet stars in M31 I. Analysis of the late-type WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Comprehensive studies of Wolf-Rayet stars were performed in the past for the Galactic and the LMC population. The results revealed significant differences, but also unexpected similarities between the WR populations of these different galaxies. Analyzing the WR stars in M 31 will extend our understanding of these objects in different galactic environments. Aims. The present study aims at the late-type WN stars in M 31. The stellar and wind parameters will tell about the formation of WR stars in other galaxies with different metallicity and star formation histories. The obtained parameters will provide constraints to the evolution of massive stars in the environment of M 31. Methods. We used the latest version of the Potsdam Wolf-Rayet model atmosphere code to analyze the stars via fitting optical spectra and photometric data. To account for the relatively low temperatures of the late WN I 0 and WN I I subtypes, our WN models have been extended into this temperature regime. Results. Stellar and atmospheric parameters are derived for all known late-type WN stars in M 31 with available spectra. All of these stars still have hydrogen in their outer envelopes, some of them up to 50% by mass. The stars are located on the cool side of the zero age main sequence in the Hertzsprung-Russell diagram, while their luminosities range from 105 to 1064). It is remarkable that no star exceeds 106 L. Conclusions. If formed via single-star evolution, the late-type WN stars in M 31 stem from an initial mass range between 20 and 60 M-circle dot. From the very late-type WN9-11 stars, only one star is located in the S Doradus instability strip. We do not find any late-type WN stars with the high luminosities known in the Milky Way. KW - stars: massive KW - stars: evolution KW - stars: mass-loss KW - stars: Wolf-Rayet KW - stars: atmospheres KW - stars: winds KW - outflows Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201323240 SN - 0004-6361 SN - 1432-0746 VL - 563 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Liermann, Angelika A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida T1 - The quintuplet cluster III. Hertzsprung-Russell diagram and cluster age (vol 540, pg A14, 2012) T2 - Astronomy and astrophysics : an international weekly journal KW - open clusters and associations: individual: Quintuplet KW - infrared: stars KW - stars: early-type KW - stars: late-type KW - Hertzsprung-Russell and C-M diagrams KW - errata, addenda Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201117534e SN - 0004-6361 SN - 1432-0746 VL - 563 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Reindl, Nicole A1 - Rauch, Thomas A1 - Parthasarathy, M. A1 - Werner, K. A1 - Kruk, J. W. A1 - Hamann, Wolf-Rainer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias T1 - The rapid evolution of the exciting star of the Stingray nebula JF - Astronomy and astrophysics : an international weekly journal N2 - Context. SAO 244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims. A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results. We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M-circle dot yr(-1)) = -9.0 to -11.6 and the terminal wind velocity increased from v(infinity) = 1800 km s(-1) to 2800 km s(-1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions. The position of SAO 244567 in the log T-eff-log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO 244567 must be a low-mass star (M < 0.55 M-circle dot). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAD 244567 would be a low-mass (0.354 M-circle dot) helium pre-white dwarf after the common-envelope phase, during which the planetary nebula was ejected. KW - stars: abundances KW - stars: evolution KW - stars: AGB and post-AGB KW - stars: individual: SAO 244567 KW - stars: fundamental parameters KW - planetary nebulae: individual: Stingray nebula (Henize 3-1357) Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201323189 SN - 0004-6361 SN - 1432-0746 VL - 565 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hainich, Rainer A1 - Ruehling, Ute A1 - Todt, Helge Tobias A1 - Oskinova, Lida A1 - Liermann, A. A1 - Graefener, G. A1 - Foellmi, C. A1 - Schnurr, O. A1 - Hamann, Wolf-Rainer T1 - The Wolf-Rayet stars in the Large Magellanic Cloud - A comprehensive analysis of the WN class JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims. Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods. For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results. We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 10(6) L-circle dot and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/L-circle dot) = 5.3 ... 5.8. Conclusions. While the few extremely luminous stars (log (L/L-circle dot) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/L-circle dot) = 5.3 ... 5.8, these stars originate from initial masses between 20 and 40 M-circle dot. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to subphotospheric inflation. KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: early-type KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201322696 SN - 0004-6361 SN - 1432-0746 VL - 565 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Oskinova, Lida A1 - Naze, Yael A1 - Todt, Helge Tobias A1 - Huenemoerder, David P. A1 - Ignace, Richard A1 - Hubrig, Swetlana A1 - Hamann, Wolf-Rainer T1 - Discovery of X-ray pulsations from a massive star JF - Nature Communications N2 - X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star xi(1) CMa. This star is a variable of beta Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism. Y1 - 2014 U6 - https://doi.org/10.1038/ncomms5024 SN - 2041-1723 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Gvaramadze, V. V. A1 - Chene, A.-N. A1 - Kniazev, A. Y. A1 - Schnurr, O. A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Hainich, Rainer A1 - Langer, N. A1 - Hamann, Wolf-Rainer A1 - Chu, Y.-H. A1 - Gruendl, R. A. T1 - Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer JF - Monthly notices of the Royal Astronomical Society N2 - We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by a parts per thousand 2 arcsec (or a parts per thousand 0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analysed the spectrum of the binary system using the non-LTE Potsdam WR (powr) code, confirming that the WR component is a very hot (a parts per thousand 90 kK) WN star. For this star, we derived a luminosity of log L/ L-aS (TM) = 5.45 and a mass-loss rate of 10(- 5.8) M-aS (TM) yr(- 1), and found that the stellar wind composition is dominated by helium with 20 per cent of hydrogen. Spectroscopy of the shell revealed an He iii region centred on BAT99 3a and having the same angular radius (a parts per thousand 15 arcsec) as the shell. We thereby add a new example to a rare class of high-excitation nebulae photoionized by WR stars. Analysis of the nebular spectrum showed that the shell is composed of unprocessed material, implying that the shell was swept-up from the local interstellar medium. We discuss the physical relationship between the newly identified massive stars and their possible membership of a previously unrecognized star cluster. KW - line: identification KW - binaries: spectroscopic KW - stars: massive KW - stars: Wolf-Rayet KW - ISM: bubbles Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu909 SN - 0035-8711 SN - 1365-2966 VL - 442 IS - 2 SP - 929 EP - 945 PB - Oxford Univ. Press CY - Oxford ER -