TY - JOUR A1 - Pranav, Manasi A1 - Hultzsch, Thomas A1 - Musiienko, Artem A1 - Sun, Bowen A1 - Shukla, Atul A1 - Jaiser, Frank A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Anticorrelated photoluminescence and free charge generation proves field-assisted exciton dissociation in low-offset PM6:Y5 organic solar cells JF - APL materials : high impact open access journal in functional materials science N2 - Understanding the origin of inefficient photocurrent generation in organic solar cells with low energy offset remains key to realizing high-performance donor-acceptor systems. Here, we probe the origin of field-dependent free-charge generation and photoluminescence in wnon-fullereneacceptor (NFA)-based organic solar cells using the polymer PM6 and the NFA Y5-a non-halogenated sibling to Y6, with a smaller energetic offset to PM6. By performing time-delayed collection field (TDCF) measurements on a variety of samples with different electron transport layers and active layer thickness, we show that the fill factor and photocurrent are limited by field-dependent free charge generation in the bulk of the blend. We also introduce a new method of TDCF called m-TDCF to prove the absence of artifacts from non-geminate recombination of photogenerated and dark charge carriers near the electrodes. We then correlate free charge generation with steady-state photoluminescence intensity and find perfect anticorrelation between these two properties. Through this, we conclude that photocurrent generation in this low-offset system is entirely controlled by the field-dependent dissociation of local excitons into charge-transfer states. (c) 2023 Author(s). Y1 - 2023 U6 - https://doi.org/10.1063/5.0151580 SN - 2166-532X VL - 11 IS - 6 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Hovhannisyan, Karen V. A1 - Nemati, Somayyeh A1 - Henkel, Carsten A1 - Anders, Janet T1 - Long-time equilibration can determine transient thermality JF - PRX Quantum N2 - When two initially thermal many-body systems start to interact strongly, their transient states quickly become non-Gibbsian, even if the systems eventually equilibrate. To see beyond this apparent lack of structure during the transient regime, we use a refined notion of thermality, which we call g-local. A system is g-locally thermal if the states of all its small subsystems are marginals of global thermal states. We numerically demonstrate for two harmonic lattices that whenever the total system equilibrates in the long run, each lattice remains g-locally thermal at all times, including the transient regime. This is true even when the lattices have long-range interactions within them. In all cases, we find that the equilibrium is described by the generalized Gibbs ensemble, with three-dimensional lattices requiring special treatment due to their extended set of conserved charges. We compare our findings with the well-known two-temperature model. While its standard form is not valid beyond weak coupling, we show that at strong coupling it can be partially salvaged by adopting the concept of a g-local temperature. Y1 - 2023 U6 - https://doi.org/10.1103/PRXQuantum.4.030321 SN - 2691-3399 VL - 4 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mattern, Maximilian A1 - Reppert, Alexander von A1 - Zeuschner, Steffen Peer A1 - Herzog, Marc A1 - Pudell, Jan-Etienne A1 - Bargheer, Matias T1 - Concepts and use cases for picosecond ultrasonics with x-rays JF - Photoacoustics N2 - This review discusses picosecond ultrasonics experiments using ultrashort hard x-ray probe pulses to extract the transient strain response of laser-excited nanoscopic structures from Bragg-peak shifts. This method provides direct, layer-specific, and quantitative information on the picosecond strain response for structures down to few-nm thickness. We model the transient strain using the elastic wave equation and express the driving stress using Gruneisen parameters stating that the laser-induced stress is proportional to energy density changes in the microscopic subsystems of the solid, i.e., electrons, phonons and spins. The laser-driven strain response can thus serve as an ultrafast proxy for local energy-density and temperature changes, but we emphasize the importance of the nanoscale morphology for an accurate interpretation due to the Poisson effect. The presented experimental use cases encompass ultrathin and opaque metal-heterostructures, continuous and granular nanolayers as well as negative thermal expansion materials, that each pose a challenge to established all-optical techniques. KW - Picosecond ultrasonics KW - Ultrafast x-ray diffraction KW - Ultrafast x-ray KW - scattering KW - Ultrafast photoacoustics KW - Nanoscale heat transfer KW - Negative KW - thermal expansion Y1 - 2023 U6 - https://doi.org/10.1016/j.pacs.2023.100503 SN - 2213-5979 VL - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Dumesnil, Karine A1 - Reppert, Alexander von A1 - Bargheer, Matias T1 - Towards shaping picosecond strain pulses via magnetostrictive transducers JF - Photoacoustics N2 - Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic–antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses. KW - picosecond ultrasonics KW - magnetostriction KW - ultrafast x-ray diffraction KW - ultrafast photoacoustics KW - nanoscale heat transfer KW - negative thermal expansion Y1 - 2023 U6 - https://doi.org/10.1016/j.pacs.2023.100463 SN - 2213-5979 VL - 30 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Di Bello, Costantino A1 - Hartmann, Alexander K. A1 - Majumdar, Satya N. A1 - Mori, Francesco A1 - Rosso, Alberto A1 - Schehr, Gregory T1 - Current fluctuations in stochastically resetting particle systems JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We consider a system of noninteracting particles on a line with initial positions distributed uniformly with density ? on the negative half-line. We consider two different models: (i) Each particle performs independent Brownian motion with stochastic resetting to its initial position with rate r and (ii) each particle performs run -and-tumble motion, and with rate r its position gets reset to its initial value and simultaneously its velocity gets randomized. We study the effects of resetting on the distribution P(Q, t) of the integrated particle current Q up to time t through the origin (from left to right). We study both the annealed and the quenched current distributions and in both cases, we find that resetting induces a stationary limiting distribution of the current at long times. However, we show that the approach to the stationary state of the current distribution in the annealed and the quenched cases are drastically different for both models. In the annealed case, the whole distribution P-an(Q, t) approaches its stationary limit uniformly for all Q. In contrast, the quenched distribution P-qu(Q, t) attains its stationary form for Q < Q(crit)(t), while it remains time dependent for Q > Q(crit)(t). We show that Q(crit)(t) increases linearly with t for large t. On the scale where Q <; Q(crit)(t), we show that P-qu(Q, t) has an unusual large deviation form with a rate function that has a third-order phase transition at the critical point. We have computed the associated rate functions analytically for both models. Using an importance sampling method that allows to probe probabilities as tiny as 10-14000, we were able to compute numerically this nonanalytic rate function for the resetting Brownian dynamics and found excellent agreement with our analytical prediction. Y1 - 2023 U6 - https://doi.org/10.1103/PhysRevE.108.014112 SN - 2470-0045 SN - 2470-0053 VL - 108 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Jaiser, Ralf A1 - Akperov, Mirseid A1 - Timazhev, A. A1 - Romanowsky, Erik A1 - Handorf, Dörthe A1 - Mokhov, I. I. T1 - Linkages between arctic and mid-latitude weather and climate BT - unraveling the impact of changing sea ice and sea surface temperatures during Winter JF - Meteorologische Zeitschrift N2 - The study addresses the question, if observed changes in terms of Arctic-midlatitude linkages during winter are driven by Arctic Sea ice decline alone or if the increase of global sea surface temperatures plays an additional role. We compare atmosphere-only model experiments with ECHAM6 to ERA-Interim Reanalysis data. The model sensitivity experiment is implemented as a set of four combinations of sea ice and sea surface temperature boundary conditions. Atmospheric circulation regimes are determined and evaluated in terms of their cyclone and blocking characteristics and changes in frequency during winter. As a prerequisite, ECHAM6 reproduces general features of circulation regimes very well. Tropospheric changes induced by the change of boundary conditions are revealed and further impacts on the large-scale circulation up into the stratosphere are investigated. In early winter, the observed increase of atmospheric blocking in the region between Scandinavia and the Urals are primarily related to the changes in sea surface temperatures. During late winter, we f nd a weakened polar stratospheric vortex in the reanalysis that further impacts the troposphere. In the model sensitivity study a climatologically weakened polar vortex occurs only if sea ice is reduced and sea surface temperatures are increased together. This response is delayed compared to the reanalysis. The tropospheric response during late winter is inconclusive in the model, which is potentially related to the weak and delayed response in the stratosphere. The model experiments do not reproduce the connection between early and late winter as interpreted from the reanalysis. Potentially explaining this mismatch, we identify a discrepancy of ECHAM6 to reproduce the weakening of the stratospheric polar vortex through blocking induced upward propagation of planetary waves. KW - Weather regimes KW - Blocking KW - Cyclones KW - Wave Propagation KW - Stratosphere Y1 - 2023 U6 - https://doi.org/10.1127/metz/2023/1154 SN - 0941-2948 SN - 1610-1227 VL - 32 IS - 3 SP - 173 EP - 194 PB - Schweizerbart CY - Stuttgart ER - TY - JOUR A1 - Fan, Xin A1 - Stegmann, Mikkel B. A1 - Schrappe, Oliver A1 - Zeidler, Steffen A1 - Jensen, Isac G. A1 - Thorsen, Jannich A1 - Bjerregaard, Tobias A1 - Krstić, Miloš T1 - Frequency-domain optimization of digital switching noise based on clock scheduling JF - IEEE Transactions on Circuits and Systems I N2 - The simultaneous switching activity in digital circuits challenges the design of mixed-signal SoCs. Rather than focusing on time-domain noise voltage minimization, this work optimizes switching noise in the frequency domain. A two-tier solution based on the on-chip clock scheduling is proposed. First, to cope with the switching noise at the fundamental clock frequency, which usually dominates in terms of noise power, a two-phase clocking scheme is employed for system timing. Second, on-chip clock latencies are manipulated to target harmonic peaks in specific frequency bands for the spectral noise optimization. An automated design flow, which allows for noise optimization in user-defined application-specific frequency bands, is developed. The effectiveness of our design solution is validated by measurements of substrate noise and conductive EMI (electromagnetic interference) noise on a test chip, which consists of four wireless sensor node baseband processors each addressing a distinct clock-tree-synthesis strategy. Compared to the reference synchronous design, the proposed clock scheduling solution substantially reduces noise in the target GSM-850 band, i.e., by 11.1 dB on the substrate noise and 12.9 dB on the EMI noise, along with dramatic noise peak drops measured at the 50-MHz clock frequency. Y1 - 2016 U6 - https://doi.org/10.1109/TCSI.2016.2546118 SN - 1549-8328 VL - 63 IS - 7 SP - 982 EP - 993 ER -