TY - JOUR A1 - Oskinova, Lida A1 - Kubatova, Brankica A1 - Hamann, Wolf-Rainer T1 - Moving inhomogeneous envelopes of stars JF - Transport in Porous Media N2 - Massive stars are extremely luminous and drive strong winds, blowing a large part of their matter into the galactic environment before they finally explode as a supernova. Quantitative knowledge of massive star feedback is required to understand our Universe as we see it. Traditionally, massive stars have been studied under the assumption that their winds are homogeneous and stationary, largely relying on the Sobolev approximation. However, Observations with the newest instruments, together with progress in model calculations, ultimately dictate a cardinal change of this paradigm: stellar winds are highly inhomogeneous. Hence, we are now advancing to a new stage in our understanding of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we now update and further develop the stellar spectral analysis techniques. New sophisticated 3-D models of radiation transfer in inhomogeneous expanding media elucidate the physics of stellar winds and improve classical empiric mass-loss rate diagnostics. Applications of these new techniques to multiwavelength observations of massive stars yield consistent and robust stellar wind parameters. (C) 2016 Elsevier Ltd. All rights reserved. KW - Stars: mass-loss KW - Stars: winds KW - Outflows KW - Stars: atmospheres early type Y1 - 2016 U6 - https://doi.org/10.1016/j.jqsrt.2016.06.017 SN - 0022-4073 SN - 1879-1352 VL - 183 SP - 100 EP - 112 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Guerrero, Martín A. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Chu, Y.-H. A1 - Gruendl, R. A. A1 - Schönberner, Detlef A1 - Oskinova, Lida A1 - Marquez-Lugo, R. A. A1 - Fang, X. A1 - Ramos-Larios, Gerardo T1 - The born-again Planetary nebula A78: an X-RAY twin of A30 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T approximate to 1.0 x 10(6) K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L-X,L-CSPN =(1.2 +/- 0.3) x 10(31) erg s(-1) and L-X,L-DIFF =(9.2 +/- 2.3) x 10(30) erg s(-1) for the CSPN and diffuse components, respectively. KW - planetary nebulae: general KW - planetary nebulae: individual (A78) KW - stars: winds, outflows KW - X-rays: ISM Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/799/1/67 SN - 0004-637X SN - 1538-4357 VL - 799 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Gimenez-Garcia, Ana A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer T1 - On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative pressure, and, as a consequence, the derived spectroscopic masses. Results. Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50% in the spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low mass-loss rates. KW - stars: early-type KW - stars: mass-loss KW - stars: winds, outflows KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425356 SN - 0004-6361 SN - 1432-0746 VL - 577 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Oskinova, Lida A1 - Todt, Helge Tobias A1 - Huenemoerder, David P. A1 - Hubrig, Swetlana A1 - Ignace, Richard A1 - Hamann, Wolf-Rainer A1 - Balona, Luis T1 - On X-ray pulsations in beta Cephei-type variables JF - Astronomy and astrophysics : an international weekly journal N2 - Context. beta Cep-type variables are early B-type stars that are characterized by oscillations observable in their optical light curves. At least one beta Cep-variable also shows periodic variability in X-rays. Aims. Here we study the X-ray light curves in a sample of beta Cep-variables to investigate how common X-ray pulsations are for this type of stars. Methods. We searched the Chandra and XMM-Newton X-ray archives and selected stars that were observed by these telescopes for at least three optical pulsational periods. We retrieved and analyzed the X-ray data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these objects were studied to test for their variability and periodicity. Results. While there is a weak indication for X-ray variability in beta Cru, we find no statistically significant evidence of X-ray pulsations in any of our sample stars. This might be due either to the insufficient data quality or to the physical lack of modulations. New, more sensitive observations should settle this question. KW - stars: massive KW - stars: variables: general KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201525908 SN - 0004-6361 SN - 1432-0746 VL - 577 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Martinez-Nunez, Silvia A1 - Sander, Angelika A1 - Gimenez-Garcia, Angel A1 - Gonzalez-Galan, Ana A1 - Torrejon, Jose Miguel A1 - Gonzalez-Fernandez, Carlos A1 - Hamann, Wolf-Rainer T1 - The donor star of the X-ray pulsar X1908+075 JF - Astronomy and astrophysics : an international weekly journal N2 - High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H-and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: M-spec = 15 +/- 6 M-circle dot, T-* = 23(-3)(+6) kK, log g(eff) = 3.0 +/- 0.2 and log L/L-circle dot = 4.81 +/- 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 +/- 0.50 kpc than the previously reported value. KW - binaries: close KW - stars: individual: X1908+075 KW - stars: massive KW - stars: winds KW - outflows KW - X-rays: binaries Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201424823 SN - 0004-6361 SN - 1432-0746 VL - 578 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Todt, Helge Tobias A1 - Sander, Angelika A1 - Hainich, Rainer A1 - Hamann, Wolf-Rainer A1 - Quade, Markus A1 - Shenar, Tomer T1 - Potsdam Wolf-Rayet model atmosphere grids for WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50%, 20%, and 0%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40%, 20%, and 0%. Recently, additional grids with SMC metallicity and with 60%, 40%, 20%, and 0% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics. KW - stars: evolution KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - stars: atmospheres KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526253 SN - 0004-6361 SN - 1432-0746 VL - 579 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Shenar, Tomer A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Corcoran, Michael F. A1 - Moffat, Anthony F. J. A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Waldron, Wayne L. A1 - Huenemoerder, David P. A1 - Maiz Apellaniz, Jesus A1 - Nichols, Joy S. A1 - Todt, Helge Tobias A1 - Naze, Yael A1 - Hoffman, Jennifer L. A1 - Pollock, Andy M. T. A1 - Negueruela, Ignacio T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. IV. A multiwavelength, non-lte spectroscopic analysis JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system delta Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if delta Ori lies at about twice the Hipparcos distance, in the vicinity of the sigma-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be Delta V approximate to 2.(m)8. The inferred parameters suggest that the secondary is an early B-type dwarf (approximate to B1 V), while the tertiary is an early B-type subgiant (approximate to B0 IV). We find evidence for rapid turbulent velocities (similar to 200 km s(-1)) and wind inhomogeneities, partially optically thick, in the primary's wind. The bulk of the X-ray emission likely emerges from the primary's stellar wind (logL(X)/L-Bol approximate to -6.85), initiating close to the stellar surface at R-0 similar to 1.1 R-*. Accounting for clumping, the mass-loss rate of the primary is found to be log (M) over dot approximate to -6.4 (M-circle dot yr(-1))., which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual ([HD 36486]delta Ori A) KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/135 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Moffat, Anthony F. J. A1 - Corcoran, Michael A1 - Shenar, Tomer A1 - Benvenuto, Omar A1 - Fuller, Jim A1 - Naze, Yael A1 - Hoffman, Jennifer L. A1 - Miroshnichenko, Anatoly A1 - Apellaniz, Jesus Maiz A1 - Evans, Nancy A1 - Eversberg, Thomas A1 - Gayley, Ken A1 - Gull, Ted A1 - Hamaguchi, Kenji A1 - Hamann, Wolf-Rainer A1 - Henrichs, Huib A1 - Hole, Tabetha A1 - Ignace, Richard A1 - Iping, Rosina A1 - Lauer, Jennifer A1 - Leutenegger, Maurice A1 - Lomax, Jamie A1 - Nichols, Joy A1 - Oskinova, Lida A1 - Owocki, Stan A1 - Pollock, Andy A1 - Russell, Christopher M. P. A1 - Waldron, Wayne A1 - Buil, Christian A1 - Garrel, Thierry A1 - Graham, Keith A1 - Heathcote, Bernard A1 - Lemoult, Thierry A1 - Li, Dong A1 - Mauclaire, Benjamin A1 - Potter, Mike A1 - Ribeiro, Jose A1 - Matthews, Jaymie A1 - Cameron, Chris A1 - Guenther, David A1 - Kuschnig, Rainer A1 - Rowe, Jason A1 - Rucinski, Slavek A1 - Sasselov, Dimitar A1 - Weiss, Werner T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. III. Analysis of optical photometric (most) and spectroscopic (ground based) variations JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system delta Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P > 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual (delta Ori A) KW - stars: mass-loss KW - stars: variables: general Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/134 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Nichols, Joy A1 - Huenemoerder, David P. A1 - Corcoran, Michael F. A1 - Waldron, Wayne A1 - Naze, Yael A1 - Pollock, Andy M. T. A1 - Moffat, Anthony F. J. A1 - Lauer, Jennifer A1 - Shenar, Tomer A1 - Russell, Christopher M. P. A1 - Richardson, Noel D. A1 - Pablo, Herbert A1 - Evans, Nancy Remage A1 - Hamaguchi, Kenji A1 - Gull, Theodore A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Ignace, Rosina A1 - Hoffman, Jennifer L. A1 - Hole, Karen Tabetha A1 - Lomax, Jamie R. T1 - A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, delta ORIONIS Aa. II. X-RAY VARIABILITY JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximate to 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 is is confirmed, with a maximum amplitude of about +/- 15% within a single approximate to 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. KW - binaries: close KW - binaries: eclipsing KW - stars: individual ([HD 36486]delta Ori A) Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/133 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Corcoran, Michael F. A1 - Nichols, Joy S. A1 - Pablo, Herbert A1 - Shenar, Tomer A1 - Pollock, Andy M. T. A1 - Waldron, Wayne L. A1 - Moffat, Anthony F. J. A1 - Richardson, Noel D. A1 - Russell, Christopher M. P. A1 - Hamaguchi, Kenji A1 - Huenemoerder, David P. A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Naze, Yael A1 - Ignace, Richard A1 - Evans, Nancy Remage A1 - Lomax, Jamie R. A1 - Hoffman, Jennifer L. A1 - Gayley, Kenneth A1 - Owocki, Stanley P. A1 - Leutenegger, Maurice A1 - Gull, Theodore R. A1 - Hole, Karen Tabetha A1 - Lauer, Jennifer A1 - Iping, Rosina C. T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. I. Overview of thr X-Ray spectrum JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (delta Ori Aa1), delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual (Delta Ori) KW - stars: mass-loss KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/132 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER -