TY - JOUR A1 - Stolbova, Veronika A1 - Martin, P. A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka JF - Nonlinear processes in geophysics N2 - This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction. Y1 - 2014 U6 - https://doi.org/10.5194/npg-21-901-2014 SN - 1023-5809 VL - 21 IS - 4 SP - 901 EP - 917 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Tectonic control on Be-10-derived erosion rates in the Garhwal Himalaya, India JF - Journal of geophysical research : Earth surface N2 - Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 Be-10-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, northern India. Tributary erosion rates range between similar to 0.1 and 0.5mmyr(-1) in the Lesser Himalaya and similar to 1 and 2mmyr(-1) in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data. Finally, analysis of sample results from larger main stem rivers indicates significant variability of Be-10-derived erosion rates, possibly related to nonproportional sediment supply from different tributaries and incomplete mixing in main stem channels. KW - Himalaya KW - erosion KW - tectonics KW - cosmogenic nuclides KW - channel steepness KW - stream power Y1 - 2014 U6 - https://doi.org/10.1002/2013JF002955 SN - 2169-9003 SN - 2169-9011 VL - 119 IS - 2 SP - 83 EP - 105 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Montero-Lopez, Carolina A1 - Strecker, Manfred A1 - Schildgen, Taylor F. A1 - Hongn, Fernando D. A1 - Guzman, Silvina A1 - Bookhagen, Bodo A1 - Sudo, Masafumi T1 - Local high relief at the southern margin of the Andean plateau by 9 Ma: evidence from ignimbritic valley fills and river incision JF - Terra nova N2 - A valley-filling ignimbrite re-exposed through subsequent river incision at the southern margin of the Andean (Puna) plateau preserves pristine geological evidence of pre-late Miocene palaeotopography in the north western Argentine Andes. Our new Ar-40/(39) Ar dating of the Las Papas Ignimbrites yields a plateau age of 9.24 +/- 0.03 Ma, indicating valley-relief and orographic-barrier conditions comparable to the present-day. A later infill of Plio-Pleistocene coarse conglomerates has been linked to wetter conditions, but resulted in no additional net incision of the Las Papas valley, considering that the base of the ignimbrite remains unexposed in the valley bottom. Our observations indicate that at least 550 m of local plateau margin relief (and likely > 2 km) existed by 9 Ma at the southern Puna margin, which likely aided the efficiency of the orographic barrier to rainfall along the eastern and south eastern flanks of the Puna and causes aridity in the plateau interior. Y1 - 2014 U6 - https://doi.org/10.1111/ter.12120 SN - 0954-4879 SN - 1365-3121 VL - 26 IS - 6 SP - 454 EP - 460 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Rohrmann, Alexander A1 - Strecker, Manfred A1 - Bookhagen, Bodo A1 - Mulch, Andreas A1 - Sachse, Dirk A1 - Pingel, Heiko A1 - Alonso, Ricardo N. A1 - Schildgen, Taylor F. A1 - Montero, Carolina T1 - Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes JF - Earth & planetary science letters KW - stable isotopes KW - Andes KW - precipitation KW - convection KW - paleoaltimetry KW - TRMM satellite data Y1 - 2014 U6 - https://doi.org/10.1016/j.epsl.2014.09.021 SN - 0012-821X SN - 1385-013X VL - 407 SP - 187 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Spatially variable response of Himalayan glaciers to climate change affected by debris cover JF - Nature geoscience N2 - Controversy about the current state and future evolution of Himalayan glaciers has been stirred up by erroneous statements in the fourth report by the Intergovernmental Panel on Climate Change(1,2). Variable retreat rates(3-6) and a paucity of glacial mass-balance data(7,8) make it difficult to develop a coherent picture of regional climate-change impacts in the region. Here, we report remotely-sensed frontal changes and surface velocities from glaciers in the greater Himalaya between 2000 and 2008 that provide evidence for strong spatial variations in glacier behaviour which are linked to topography and climate. More than 65% of the monsoon-influenced glaciers that we observed are retreating, but heavily debris-covered glaciers with stagnant low-gradient terminus regions typically have stable fronts. Debris-covered glaciers are common in the rugged central Himalaya, but they are almost absent in subdued landscapes on the Tibetan Plateau, where retreat rates are higher. In contrast, more than 50% of observed glaciers in the westerlies-influenced Karakoram region in the northwestern Himalaya are advancing or stable. Our study shows that there is no uniform response of Himalayan glaciers to climate change and highlights the importance of debris cover for understanding glacier retreat, an effect that has so far been neglected in predictions of future water availability(9,10) or global sea level(11). Y1 - 2011 U6 - https://doi.org/10.1038/NGEO1068 SN - 1752-0894 VL - 4 IS - 3 SP - 156 EP - 159 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Hain, Mathis P. A1 - Strecker, Manfred A1 - Bookhagen, Bodo A1 - Alonso, Ricardo N. A1 - Pingel, H. A1 - Schmitt, Axel K. T1 - Neogene to quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25 degrees S) JF - Tectonics N2 - The northwest Argentine Andes constitute a premier natural laboratory to assess the complex interactions between isolated uplifts, orographic precipitation gradients, and related erosion and sedimentation patterns. Here we present new stratigraphic observations and age information from intermontane basin sediments to elucidate the Neogene to Quaternary shortening history and associated sediment dynamics of the broken Salta foreland. This part of the Andean orogen, which comprises an array of basement-cored range uplifts, is located at similar to 25 degrees S and lies to the east of the arid intraorogenic Altiplano/Puna plateau. In the Salta foreland, spatially and temporally disparate range uplift along steeply dipping inherited faults has resulted in foreland compartmentalization with steep basin-tobasin precipitation gradients. Sediment architecture and facies associations record a three-phase (similar to 10, similar to 5, and <2 Ma), east directed, yet unsystematic evolution of shortening, foreland fragmentation, and ensuing changes in precipitation and sediment transport. The provenance signatures of these deposits reflect the trapping of sediments in the intermontane basins of the Andean hinterland, as well as the evolution of a severed fluvial network. Present-day moisture supply to the hinterland is determined by range relief and basin elevation. The conspiring effects of range uplift and low rainfall help the entrapment and long-term storage of sediments, ultimately raising basin elevation in the hinterland, which may amplify aridification in the orogen interior. Y1 - 2011 U6 - https://doi.org/10.1029/2010TC002703 SN - 0278-7407 VL - 30 IS - 11 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Hillslope-glacier coupling the interplay of topography and glacial dynamics in High Asia JF - Journal of geophysical research : Earth surface N2 - High Asian glacial landscapes have large variations in topographic relief and the size and steepness of snow accumulation areas. Associated differences in glacial cover and dynamics allow a first-order determination of the dominant processes shaping these landscapes. Here we provide a regional synthesis of the topography and flow characteristics of 287 glaciers across High Asia using digital elevation analysis and remotely sensed glacier surface velocities. Glaciers situated in low-relief areas on the Tibetan Plateau are mainly nourished by direct snowfall, have little or no debris cover, and have a relatively symmetrical distribution of velocities along their length. In contrast, avalanche-fed glaciers with steep accumulation areas, which occur at the deeply incised edges of the Tibetan Plateau, are heavily covered with supraglacial debris, and flow velocities are highest along short segments near their headwalls but greatly reduced along their debris-mantled lower parts. The downstream distribution of flow velocities suggests that the glacial erosion potential is progressively shifted upstream as accumulation areas get steeper and hillslope debris fluxes increase. Our data suggest that the coupling of hillslopes and glacial dynamics increases with topographic steepness and debris cover. The melt-lowering effect of thick debris cover allows the existence of glaciers even when they are located entirely below the snow line. However, slow velocities limit the erosion potential of such glaciers, and their main landscape-shaping contribution may simply be the evacuation of debris from the base of glacial headwalls, which inhibits the formation of scree slopes and thereby allows ongoing headwall retreat by periglacial hillslope processes. We propose a conceptual model in which glacially influenced plateau margins evolve from low-relief to high-relief landscapes with distinctive contributions of hillslope processes and glaciers to relief production and decay. Y1 - 2011 U6 - https://doi.org/10.1029/2010JF001751 SN - 0148-0227 VL - 116 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wulf, Hendrik A1 - Bookhagen, Bodo A1 - Scherler, Dirk T1 - Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya JF - Hydrology and earth system sciences : HESS N2 - The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001-2009) from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC) events. Our study identifies three key findings: First, peak SSC events (a parts per thousand yen 99th SSC percentile) coincide frequently (57-80%) with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and more frequent monsoonal rainstorms across the Himalaya, we expect an increase in peak SSC events, which will decrease the water quality and impact hydropower generation. Y1 - 2012 U6 - https://doi.org/10.5194/hess-16-2193-2012 SN - 1027-5606 VL - 16 IS - 7 SP - 2193 EP - 2217 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schildgen, Taylor F. A1 - Cosentino, D. A1 - Bookhagen, Bodo A1 - Niedermann, Samuel A1 - Yildirim, C. A1 - Echtler, Helmut Peter A1 - Wittmann, Hella A1 - Strecker, Manfred T1 - Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey a record of tectonic and upper mantle processes JF - Earth & planetary science letters N2 - Uplifted Neogene marine sediments and Quaternary fluvial terraces in the Mut Basin, southern Turkey, reveal a detailed history of surface uplift along the southern margin of the Central Anatolian plateau from the Late Miocene to the present. New surface exposure ages (Be-10, Al-26, and Ne-21) of gravels capping fluvial strath terraces located between 28 and 135 m above the Goksu River in the Mut Basin yield ages ranging from ca. 25 to 130 ka, corresponding to an average incision rate of 0.52 to 0.67 mm/yr. Published biostratigraphic data combined with new interpretations of the fossil assemblages from uplifted marine sediments reveal average uplift rates of 0.25 to 0.37 mm/yr since Late Miocene time (starting between 8 and 5.45 Ma), and 0.72 to 0.74 mm/yr after 1.66 to 1.62 Ma. Together with the terrace abandonment ages, the data imply 0.6 to 0.7 mm/yr uplift rates from 1.6 Ma to the present. The different post-Late Miocene and post-1.6 Ma uplift rates can imply increasing uplift rates through time, or multi-phased uplift with slow uplift or subsidence in between. Longitudinal profiles of rivers in the upper catchment of the Mut and Ermenek basins show no apparent lithologic or fault control on some knickpoints that occur at 1.2 to 1.5 km elevation, implying a transient response to a change in uplift rates. Projections of graded upper relict channel segments to the modern outlet, together with constraints from uplifted marine sediments, show that a slower incision/uplift rate of 0.1 to 0.2 mm/yr preceded the 0.7 mm/yr uplift rate. The river morphology and profile projections therefore reflect multi-phased uplift of the plateau margin, rather than steadily increasing uplift rates. Multi-phased uplift can be explained by lithospheric slab break-off and possibly also the arrival of the Eratosthenes Seamount at the collision zone south of Cyprus. KW - Central Anatolian plateau KW - uplift KW - fluvial strath terraces KW - cosmogenic nuclides KW - biostratigraphy KW - channel projection Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2011.12.003 SN - 0012-821X VL - 317 SP - 85 EP - 95 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes JF - Earth & planetary science letters N2 - The tectonic and climatic boundary conditions of the broken foreland and the orogen interior of the southern Central Andes of northwestern Argentina cause strong contrasts in elevation, rainfall, and surface-process regimes. The climatic gradient in this region ranges from the wet, windward eastern flanks (similar to 2 m/yr rainfall) to progressively drier western basins and ranges (similar to 0.1 m/yr) bordering the arid Altiplano-Puna Plateau. In this study, we analyze the impact of spatiotemporal climatic gradients on surface erosion: First, we present 41 new catchment-mean erosion rates derived from cosmogenic nuclide inventories to document spatial erosion patterns. Second, we re-evaluate paleoclimatic records from the Calchaquies basin (66 W, 26 S), a large intermontane basin bordered by high (> 4.5 km) mountain ranges, to demonstrate temporal variations in erosion rates associated with changing climatic boundary conditions during the late Pleistocene and Holocene. Three key observations in this region emphasize the importance of climatic parameters on the efficiency of surface processes in space and time: (1) First-order spatial patterns of erosion rates can be explained by a simple specific stream power (SSP) approach. We explicitly account for discharge by routing high-resolution, satellite derived rainfall. This is important as the steep climatic gradient results in a highly non-linear relation between drainage area and discharge. This relation indicates that erosion rates (ER) scale with ER similar to SSP1.4 on cosmogenic-nuclide time scales. (2) We identify an intrinsic channel-slope behavior in different climatic compartments. Channel slopes in dry areas (< 0.25 m/yr rainfall) are slightly steeper than in wet areas (> 0.75 m/yr) with equal drainage areas, thus compensating lower amounts of discharge with steeper slopes. (3) Erosion rates can vary by an order of magnitude between presently dry (similar to 0.05 mm/yr) and well-defined late Pleistocene humid (similar to 0.5 mm/yr) conditions within an intemontane basin. Overall, we document a strong climatic impact on erosion rates and channel slopes. We suggest that rainfall reaching areas with steeper channel slopes in the orogen interior during wetter climate periods results in intensified sediment mass transport, which is primarily responsible for maintaining the balance between surface uplift, erosion, sediment routing and transient storage in the orogen. KW - erosion KW - landscape evolution KW - specific stream power KW - cosmogenic radionuclides KW - paleoclimate KW - climate-tectonic feedback processes Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2012.02.005 SN - 0012-821X VL - 327 IS - 8 SP - 97 EP - 110 PB - Elsevier CY - Amsterdam ER -