TY - JOUR A1 - Ayzel, Georgy A1 - Scheffer, Tobias A1 - Heistermann, Maik T1 - RainNet v1.0 BT - a convolutional neural network for radar-based precipitation nowcasting JF - Geoscientific Model Development N2 - In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900km × 900km and has a resolution of 1km in space and 5min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1h, a recursive approach was implemented by using RainNet predictions at 5min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5mm h⁻¹. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15mm h⁻¹). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5min, however, the increasing level of smoothing is a mere artifact – an analogue to numerical diffusion – that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies. KW - weather KW - models KW - skill Y1 - 2020 U6 - https://doi.org/10.5194/gmd-13-2631-2020 SN - 1991-959X SN - 1991-9603 VL - 13 IS - 6 SP - 2631 EP - 2644 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Öztürk, Ugur A1 - Kurths, Jürgen A1 - Merz, Bruno T1 - Optimal design of hydrometric station networks based on complex network analysis JF - Hydrology and Earth System Sciences N2 - Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail. KW - identifying influential nodes KW - climate networks KW - rainfall KW - streamflow KW - synchronization KW - precipitation KW - classification KW - events Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-2235-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 5 SP - 2235 EP - 2251 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Crisologo, Irene A1 - Heistermann, Maik T1 - Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms JF - Atmospheric Measurement Techniques N2 - Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations. KW - Weather KW - Band KW - Reflectivity KW - Algorithm KW - Uncertainties KW - Methodology KW - Kwajalein Y1 - 2020 U6 - https://doi.org/10.5194/amt-13-645-2020 SN - 1867-1381 SN - 1867-8548 VL - 13 IS - 2 SP - 645 EP - 659 PB - Copernicus Publications CY - Göttingen ER -