TY - JOUR A1 - Knight, Joseph W. A1 - Wang, Xiaopeng A1 - Gallandi, Lukas A1 - Dolgounitcheva, Olga A1 - Ren, Xinguo A1 - Ortiz, J. Vincent A1 - Rinke, Patrick A1 - Körzdörfer, Thomas A1 - Marom, Noa T1 - Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods JF - Journal of chemical theory and computation N2 - The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green’s function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a “beyond GW” second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jctc.5b00871 SN - 1549-9618 SN - 1549-9626 VL - 12 SP - 615 EP - 626 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Gallandi, Lukas A1 - Marom, Noa A1 - Rinke, Patrick A1 - Körzdörfer, Thomas T1 - Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals JF - Journal of chemical theory and computation N2 - The performance of non-empirically tuned long-range corrected hybrid functionals for the prediction of vertical ionization potentials (IPs) and electron affinities (EAs) is assessed for a set of 24 organic acceptor molecules. Basis set extrapolated coupled cluster singles, doubles, and perturbative triples [CCSD(T)] calculations serve as a reference for this study. Compared to standard exchange-correlation functionals, tuned long-range corrected hybrid functionals produce highly reliable results for vertical IPs and EAs, yielding mean absolute errors on par with computationally more demanding GW calculations. In particular, it is demonstrated that long-range corrected hybrid functionals serve as ideal starting points for non-self-consistent GW calculations. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jctc.5b00873 SN - 1549-9618 SN - 1549-9626 VL - 12 SP - 605 EP - 614 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wessig, Pablo A1 - Gerngross, Maik A1 - Freyse, Daniel A1 - Bruhn, P. A1 - Przezdziak, Marc A1 - Schilde, Uwe A1 - Kelling, Alexandra T1 - Molecular Rods Based on Oligo-spiro-thioketals JF - The journal of organic chemistry N2 - We report on an extension of the previously established concept of oligospiroketal (OSK) rods by replacing a part or all ketal moieties by thioketals leading to oligospirothioketal (OSTK) rods. In this way, some crucial problems arising from the reversible formation of ketals are circumvented. Furthermore, the stability of the rods toward hydrolysis is considerably improved. To successfully implement this concept, we first developed a number of new oligothiol building blocks and improved the synthetic accessibility of known oligothiols, respectively. Another advantage of thioacetals is that terephthalaldehyde (TAA) sleeves, which are too flexible in the case of acetals can be used in OSTK rods. The viability of the OSTK approach was demonstrated by the successful preparation of some OSTK rods with a length of some nanometers. Y1 - 2016 U6 - https://doi.org/10.1021/acs.joc.5b02670 SN - 0022-3263 VL - 81 SP - 1125 EP - 1136 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Secker, Christian A1 - Voelkel, Antje A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Schlaad, Helmut T1 - Thermo-Induced Aggregation and Crystallization of Block Copolypeptoids in Water JF - Macromolecules : a publication of the American Chemical Society N2 - Block copolypeptoids comprising a thermosensitive, crystallizable poly(N-(n-propyl)glycine) block and a watersoluble poly(N-methylglycine) block, P70My (y = 23, 42, 76, 153, and 290), were synthesized bY ring-opening polymerization of the corresponding N-alkylglycine N-carboxyanhydrides (NCAs) and examined according to their thermo-induced aggregation and crystallization in water by turbidimetty, micro-differential scanning calorimetry (micro-DSC); cryogenic scanning electron microscopy (cryo-SEM), analytical ultracentrifugation (AUC), and static light scattering (SLS). At a temperature above the cloud point temperature, the initially formed micellar aggregates started to crystallize and grow into larger complex assemblies of about 100-500 nm, exhibiting flower-like (P70M23), ellipsoidal (P70M42 and P70M72) or irregular shapes (P70M153 and.P70M290). Y1 - 2016 U6 - https://doi.org/10.1021/acs.macromol.5b02481 SN - 0024-9297 SN - 1520-5835 VL - 49 SP - 979 EP - 985 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Decomposition of DNA Nucleobases by Laser Irradiation of Gold Nanoparticles Monitored by Surface-Enhanced Raman Scattering JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Different approaches have been proposed to treat cancer cells using gold nanoparticles (AuNPs) in combination with radiation ranging from infrared lasers to high-energy ion beams. Here we study the decomposition of the DNA/RNA nucleobases thymine (T) and uracil (U) and the well-known radiosensitizer 5-bromouracil (BrU) in close vicinity to AuNPs, which are irradiated with a nanosecond pulsed laser (532 nm) matching the surface plasmon resonance of the AuNPs. The induced damage of nucleobases is analyzed by UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS). A clear DNA damage is observed upon laser irradiation. SERS spectra indicate the fragmentation of the aromatic ring system of T and U as the dominant form of damage, whereas with BrU mainly the cleavage of the Br-C bond and formation of Br- ions is observed. This is accompanied by a partial transformation of BrU into U. The observed damage is at least partly ascribed to the intermediate formation of low energy electrons from the laser-excited AuNPs and subsequent dissociative electron attachment to T, U, and BrU. These reactions represent basic DNA damage pathways occurring on the one hand in plasmon-assisted cancer therapy and on the other hand in conventional cancer radiation therapy using AuNPs as sensitizing agents. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.5b10564 SN - 1932-7447 VL - 120 SP - 3001 EP - 3009 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Dietrich, Paul M. A1 - Glamsch, Stephan A1 - Ehlert, Christopher A1 - Lippitz, Andreas A1 - Kulak, Nora A1 - Unger, Wolfgang E. S. T1 - Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon JF - Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces N2 - The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z(95) of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) - inorganic (SiO2/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS. (C) 2015 Elsevier B.V. All rights reserved. KW - Synchrotron radiation XPS KW - Depth profiling KW - Silanes KW - Monolayer KW - Amines KW - Amides Y1 - 2016 U6 - https://doi.org/10.1016/j.apsusc.2015.12.052 SN - 0169-4332 SN - 1873-5584 VL - 363 SP - 406 EP - 411 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Matkovic, Aleksandar A1 - Vasic, Borislav A1 - Pesic, Jelena A1 - Prinz, Julia A1 - Bald, Ilko A1 - Milosavljevic, Aleksandar R. A1 - Gajic, Rados T1 - Enhanced structural stability of DNA origami nanostructures by graphene encapsulation JF - NEW JOURNAL OF PHYSICS N2 - We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication. KW - graphene KW - DNA origami nanostructures KW - atomic force microscopy Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/025016 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Gangloff, Niklas A1 - Ulbricht, Juliane A1 - Lorson, Thomas A1 - Schlaad, Helmut A1 - Luxenhofer, Robert T1 - Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering JF - Chemical reviews Y1 - 2016 U6 - https://doi.org/10.1021/acs.chemrev.5b00201 SN - 0009-2665 SN - 1520-6890 VL - 116 SP - 1753 EP - 1802 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kyriakos, Konstantinos A1 - Philipp, Martine A1 - Lin, Che-Hung A1 - Dyakonova, Margarita A1 - Vishnevetskaya, Natalya A1 - Grillo, Isabelle A1 - Zaccone, Alessio A1 - Miasnikova, Anna A1 - Laschewsky, Andre A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency JF - Macromolecular rapid communications N2 - The aggregation kinetics of thermoresponsive core-shell micelles with a poly(N-isopropyl acrylamide) shell in pure water or in mixtures of water with the cosolvents methanol or ethanol at mole fractions of 5% is investigated during a temperature jump across the respective cloud point. Characteristically, these mixtures give rise to cononsolvency behavior. At the cloud point, aggregates are formed, and their growth is followed with time-resolved small-angle neutron scattering. Using the reversible association model, the interaction potential between the aggregates is determined from their growth rate in dependence on the cosolvents. The effect of the cosolvent is attributed to the interaction potential on the structured layer of hydration water around the aggregates. It is surmised that the latter is perturbed by the cosolvent and thus the residual repulsive hydration force between the aggregates is reduced. The larger the molar volume of the cosolvent, the more pronounced is the effect. This framework provides a molecular-level understanding of solvent-mediated effective interactions in polymer solutions and new opportunities for the rational control of self-assembly in complex soft matter systems. KW - colloidal aggregation KW - cononsolvency KW - interaction potential KW - polymer solutions KW - self-assembled micelles KW - thermoresponsive polymers Y1 - 2016 U6 - https://doi.org/10.1002/marc.201500583 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 420 EP - 425 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pinyou, Piyanut A1 - Ruff, Adrian A1 - Poeller, Sascha A1 - Barwe, Stefan A1 - Nebel, Michaela A1 - Alburquerque, Natalia Guerrero A1 - Wischerhoff, Erik A1 - Laschewsky, Andre A1 - Schmaderer, Sebastian A1 - Szeponik, Jan A1 - Plumere, Nicolas A1 - Schuhmann, Wolfgang T1 - Thermoresponsive amperometric glucose biosensor JF - Biointerphases N2 - The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(omega-ethoxytriethylenglycol methacrylate-omega-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-omega-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 degrees C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol) methacrylate-co-butyl acrylate-co-2-(dimethylamino) ethyl methacrylate)-[Os(bpy)(2)(4-(((2-(2-(2-aminoethoxy) ethoxy) ethyl) amino) methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on-to an off-state without heating of the surrounding analyte solution. (C) 2015 American Vacuum Society. Y1 - 2016 U6 - https://doi.org/10.1116/1.4938382 SN - 1934-8630 SN - 1559-4106 VL - 11 PB - American Institute of Physics CY - Melville ER -