TY - GEN A1 - Jiang, Yi A1 - Mansfeld, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memory technology T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Temperature-memory technology was utilized to generate flat substrates with a programmable stiffness pattern from cross-linked poly(ethylene-co-vinyl acetate) substrates with cylindrical microstructures. Programmed substrates were obtained by vertical compression at temperatures in the range from 60 to 100 degrees C and subsequent cooling, whereby a flat substrate was achieved by compression at 72 degrees C, as documented by scanning electron microscopy and atomic force microscopy (AFM). AFM nanoindentation experiments revealed that all programmed substrates exhibited the targeted stiffness pattern. The presented technology for generating polymeric substrates with programmable stiffness pattern should be attractive for applications such as touchpads. optical storage, or cell instructive substrates. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1102 KW - shape KW - surfaces KW - modulus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469745 SN - 1866-8372 VL - 9 IS - 1 SP - 181 EP - 188 ER -