TY - GEN A1 - Abbas, Ioana M. A1 - Vranic, Marija A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, María A1 - Möller, Heiko Michael A1 - Weller, Michael G. T1 - Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺ T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 701 KW - hepcidin-25 KW - copper KW - nickel KW - copper complex KW - ATCUN motif KW - metal complex KW - MS KW - NMR structure KW - metal peptide KW - metalloprotein KW - metallopeptide KW - isomerization KW - racemization KW - purity KW - reference material Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427926 SN - 1866-8372 IS - 701 ER - TY - JOUR A1 - Adem, Fozia A. A1 - Mbaveng, Armelle T. A1 - Kuete, Victor A1 - Heydenreich, Matthias A1 - Ndakala, Albert A1 - Irungu, Beatrice A1 - Yenesew, Abiy A1 - Efferth, Thomas T1 - Cytotoxicity of isoflavones and biflavonoids from Ormocarpum kirkii towards multi-factorial drug resistant cancer JF - Phytomedicine : international journal of phytotherapy and phytopharmacology N2 - Background: While incidences of cancer are continuously increasing, drug resistance of malignant cells is observed towards almost all pharmaceuticals. Several isoflavonoids and flavonoids are known for their cytotoxicity towards various cancer cells. Methods: The cytotoxicity of compounds was determined based on the resazurin reduction assay. Caspases activation was evaluated using the caspase-Glo assay. Flow cytometry was used to analyze the cell cycle (propodium iodide (PI) staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-1) and reactive oxygen species (ROS) (H2DCFH-DA). CCRF-CEM leukemia cells were used as model cells for mechanistic studies. Results: Compounds 1, 2 and 4 displayed IC50 values below 20 mu M towards CCRF-CEM and CEM/ADR5000 leukemia cells, and were further tested towards a panel of 7 carcinoma cells. The IC50 values of the compounds against carcinoma cells varied from 16.90 mu M (in resistant U87MG.Delta EGFR glioblastoma cells) to 48.67 mu M (against HepG2 hepatocarcinoma cells) for 1, from 7.85 mu M (in U87MG.Delta EGFR cells) to 14.44 mu M (in resistant MDA-MB231/BCRP breast adenocarcinoma cells) for 2, from 4.96 mu M (towards U87MG.Delta EGFRcells) to 7.76 mu M (against MDA-MB231/BCRP cells) for 4, and from 0.07 mu M (against MDA-MB231 cells) to 2.15 mu M (against HepG2 cells) for doxorubicin. Compounds 2 and 4 induced apoptosis in CCRF-CEM cells mediated by MMP alteration and increased ROS production. Conclusion: The present report indicates that isoflavones and biflavonoids from Ormocarpum kirkii are cytotoxic compounds with the potential of being exploited in cancer chemotherapy. Compounds 2 and 4 deserve further studies to develop new anticancer drugs to fight sensitive and resistant cancer cell lines. KW - Apoptosis KW - Cancer KW - Ormocarpum kirkii KW - Isoflavone KW - Biflavonoid KW - Multi-drug resistance Y1 - 2019 U6 - https://doi.org/10.1016/j.phymed.2019.152853 SN - 0944-7113 SN - 1618-095X VL - 58 PB - Elsevier CY - München ER - TY - THES A1 - Al Nakeeb, Noah T1 - Self-assembly and crosslinking approaches of double hydrophilic linear-brush block copolymers BT - a biocompatible platform for the next generation of nanoreactors Y1 - 2019 ER - TY - JOUR A1 - Al Nakeeb, Noah A1 - Kochovski, Zdravko A1 - Li, Tingting A1 - Zhang, Youjia A1 - Lu, Yan A1 - Schmidt, Bernhard V. K. J. T1 - Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline alpha-cyclodextrin domains JF - RSC Advances N2 - Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via alpha-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for alpha-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra10672j SN - 2046-2069 VL - 9 IS - 9 SP - 4993 EP - 5001 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Aloni, Sapir Shekef A1 - Perovic, Milena A1 - Weitman, Michal A1 - Cohen, Reut A1 - Oschatz, Martin A1 - Mastai, Yitzhak T1 - Amino acid-based ionic liquids as precursors for the synthesis of chiral nanoporous carbons JF - Nanoscale Advances N2 - The synthesis of chiral nanoporous carbons based on chiral ionic liquids (CILs) of amino acids as precursors is described. Such unique precursors for the carbonization of CILs yield chiral carbonaceous materials with high surface area (approximate to 620 m(2) g(-1)). The enantioselectivities of the porous carbons are examined by advanced techniques such as selective adsorption of enantiomers using cyclic voltammetry, isothermal titration calorimetry, and mass spectrometry. These techniques demonstrate the chiral nature and high enantioselectivity of the chiral carbon materials. Overall, we believe that the novel approach presented here can contribute significantly to the development of new chiral carbon materials that will find important applications in chiral chemistry, such as in chiral catalysis and separation and in chiral sensors. From a scientific point of view, the approach and results reported here can significantly deepen our understanding of chirality at the nanoscale and of the structure and nature of chiral nonporous materials and surfaces. Y1 - 2019 U6 - https://doi.org/10.1039/c9na00520j SN - 2516-0230 VL - 1 IS - 12 SP - 4981 EP - 4988 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Alrefai, Anas A1 - Mondal, Suvendu Sekhar A1 - Wruck, Alexander A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Brandt, Philipp A1 - Janiak, Christoph A1 - Schoenfeld, Sophie A1 - Weber, Birgit A1 - Rybakowski, Lawrence A1 - Herrman, Carmen A1 - Brennenstuhl, Katlen A1 - Eidner, Sascha A1 - Kumke, Michael Uwe A1 - Behrens, Karsten A1 - Günter, Christina A1 - Müller, Holger A1 - Holdt, Hans-Jürgen T1 - Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties JF - Journal of Inclusion Phenomena and Macrocyclic Chemistry N2 - By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework. KW - Gas-sorption KW - Ligand design KW - Magnetic properties KW - Supramolecular chemistry KW - Solvothermal synthesis Y1 - 2019 U6 - https://doi.org/10.1007/s10847-019-00926-6 SN - 1388-3127 SN - 1573-1111 VL - 94 IS - 3-4 SP - 155 EP - 165 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Bald, Ilko A1 - Schürmann, Robin Mathis A1 - Ebel, Kenny A1 - Nicolas, Christophe A1 - Milosavljevic, Aleksandar R. T1 - Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol JF - The Journal of Physical Chemistry Letters N2 - Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system. Y1 - 2019 UR - https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00848 U6 - https://doi.org/10.1021/acs.jpclett.9b00848 SN - 1948-7185 VL - 10 SP - 3153 EP - 3158 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Schürmann, Robin Mathis A1 - Pacholski, Claudia T1 - One Spot-Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance JF - Frontiers in chemistry N2 - Sensors composed of a porous silicon monolayer covered with a film of nanostructured gold layer, which provide two optical signal transduction methods, are fabricated and thoroughly characterized concerning their sensing performance. For this purpose, silicon substrates were electrochemically etched in order to obtain porous silicon monolayers, which were subsequently immersed in gold salt solution facilitating the formation of a porous gold nanoparticle layer on top of the porous silicon. The deposition process was monitored by reflectance spectroscopy, and the appearance of a dip in the interference pattern of the porous silicon layer was observed. This dip can be assigned to the absorption of light by the deposited gold nanostructures leading to localized surface plasmon resonance. The bulk sensitivity of these sensors was determined by recording reflectance spectra in media having different refractive indices and compared to sensors exclusively based on porous silicon or gold nanostructures. A thorough analysis of resulting shifts of the different optical signals in the reflectance spectra on the wavelength scale indicated that the optical response of the porous silicon sensor is not influenced by the presence of a gold nanostructure on top. Moreover, the adsorption of thiol-terminated polystyrene to the sensor surface was solely detected by changes in the position of the dip in the reflectance spectrum, which is assigned to localized surface plasmon resonance in the gold nanostructures. The interference pattern resulting from the porous silicon layer is not shifted to longer wavelengths by the adsorption indicating the independence of the optical response of the two nanostructures, namely porous silicon and nanostructured gold layer, to refractive index changes and pointing to the successful realization of two sensors in one spot. KW - porous silicon KW - interferometry KW - gold nanostructures KW - surface plasmon resonance KW - optical sensor Y1 - 2019 U6 - https://doi.org/10.3389/fchem.2019.00593 SN - 2296-2646 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Quadruple-shape hydrogels JF - Smart materials and structures N2 - The capability of directed movements by two subsequent shape changes could be implemented in shape-memory hydrogels by incorporation of two types of crystallizable side chains While in non-swollen polymer networks even more directed movements could be realized, the creation of multi-shape hydrogels is still a challenge. We hypothesize that a quadruple-shape effect in hydrogels can be realized, when a swelling capacity almost independent of temperature is generated, whereby directed movements could be enabled, which are not related to swelling. In this case, entropy elastic recovery could be realized by hydrophilic segments and the fixation of different macroscopic shapes by means of three semi-crystalline side chains generating temporary crosslinks. Monomethacrylated semi-crystalline oligomers were connected as side chains in a hydrophilic polymer network via radical copolymerization. Computer assisted modelling was utilized to design a demonstrator capable of complex shape shifts by creating a casting mold via 3D printing from polyvinyl alcohol. The demonstrator was obtained after copolymerization of polymer network forming components within the mold, which was subsequently dissolved in water. A thermally-induced quadruple-shape effect was realized after equilibrium swelling of the polymer network in water. Three directed movements were successfully obtained when the temperature was continuously increased from 5 degrees C to 90 degrees C with a recovery ratio of the original shape above 90%. Hence, a thermally-induced quadruple-shape effect as new record for hydrogels was realized. Here, the temperature range for the multi-shape effect was limited by water as swelling media (0 degrees C-100 degrees C), simultaneously distinctly separated thermal transitions were required, and the overall elasticity indispensable for successive deformations was reduced as result of partially chain segment orientation induced by swelling in water. Conclusively the challenges for penta- or hexa-shape gels are the design of systems enabling higher elastic deformability and covering a larger temperature range by switching to a different solvent. KW - shape-memory KW - hydrogels KW - semi-crystalline Y1 - 2019 U6 - https://doi.org/10.1088/1361-665X/ab0e91 SN - 0964-1726 SN - 1361-665X VL - 28 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Hydrolytic Degradation of Actuators Based on Copolymer Networks From Oligo(epsilon-caprolactone) Dimethacrylate and n-Butyl Acrylate JF - MRS advances N2 - Shape-memory polymer actuators often contain crystallizable polyester segments. Here, the influence of accelerated hydrolytic degradation on the actuation performance in copolymer networks based on oligo(epsilon-caprolactone) dimethacrylate (OCL) and n-butyl acrylate is studied The semi-crystalline OCL was utilized as crosslinker with molecular weights of 2.3 and 15.2 kg.mol(-1) (ratio: 1:1 wt%) and n-butyl acrylate (25 wt% relative to OCL content) acted as softening agent creating the polymer main chain segments within the network architecture. The copolymer networks were programmed by 50% elongation and were degraded by means of alkaline hydrolysis utilizing sodium hydroxide solution (pH = 13). Experiments were performed in the range of the broad melting range of the actuators at 40 degrees C. The degradation of test specimen was monitored by the sample mass, which was reduced by 25 wt% within 105 d .45 degradation products, fragments of OCL with molecular masses ranging from 400 to 50.000 g.mol(-1) could be detected by NMR spectroscopy and GPC measurements. The cleavage of ester groups included in OCL segments resulted in a decrease of the melting temperature (T-m) related to the actuator domains (amorphous at the temperature of degradation) and simultaneously, the T-m associated to the skeleton domain was increased (semi-crystalline at the temperature of degradation). The alkaline hydrolysis decreased the polymer chain orientation of OCL domains until a random alignment of crystalline domains was obtained. This result was confirmed by cyclic thermomechanical actuation tests. The performance of directed movements decreased almost linearly as function of degradation time resulting in the loss of functionality when the orientation of polymer chains disappeared. Here, actuators were able to provide reversible movements until 91 d when the accelerated bulk degradation procedure using alkaline hydrolysis (pH = 13) was applied. Accordingly, a lifetime of more than one year can be guaranteed under physiological conditions (pH = 7.4) when, e.g., artificial muscles for biomimetic robots as potential application for these kind of shape-memory polymer actuators will be addressed. Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.202 SN - 2059-8521 VL - 4 IS - 21 SP - 1193 EP - 1205 PB - Cambridge Univ. Press CY - New York ER -