TY - JOUR A1 - Gehne, Sören A1 - Flehr, Roman A1 - Kienzler, Andrea Altevogt Nee A1 - Berg, Maik A1 - Bannwarth, Willi A1 - Kumke, Michael Uwe T1 - Dye dynamics in three-color FRET samples JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Time-resolved emission data (fluorescence decay and fluorescence depolarization) of two three-color Forster resonance energy transfer (tc-FRET) systems consisting of a carbostyril donor (D), a ruthenium complex (Ru) as relay dye, and a Cy5 derivative (Cy) or, optionally, an anthraquinone quencher (Q) were carefully analyzed using advanced distribution analysis models. Thereby, it is possible to get information on the flexibility and mobility of the chromophores which are bound to double stranded (ds) DNA. Especially the distance distribution based on the analysis of the fluorescence depolarization is an attractive approach to complement data of fluorescence decay time analysis. The distance distributions extracted from the experimental data were in excellent agreement with those determined from accessible volume (AV) simulations. Moreover, the study showed that for tc-FRET systems the combination of dyes emitting on different time scales (e.g., nanoseconds vs microseconds) is highly beneficial in the distribution analysis of time-resolved luminescence data in cases where macromolecules such as DNA are involved. Here, the short lifetimes can yield information on the rotation of the dye molecule itself and the long lifetime can give insight in the overall dynamics of the macromolecule. Y1 - 2012 U6 - https://doi.org/10.1021/jp3064273 SN - 1520-6106 VL - 116 IS - 35 SP - 10798 EP - 10806 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kienzler, Andrea Altevogt Nee A1 - Flehr, Roman A1 - Gehne, Sören A1 - Kumke, Michael Uwe A1 - Bannwarth, Willi T1 - Verification and biophysical characterization of a New Three-Color Forster Resonance-Energy-Transfer (FRET) System in DNA JF - Helvetica chimica acta N2 - We report on a new three-color FRET system consisting of three fluorescent dyes, i.e., of a carbostyril (=quinolin-2(1H)-one)-derived donor D, a (bathophenanthroline)ruthenium complex as a relay chromophore A1, and a Cy dye as A2 (FRET=Forster resonance-energy-transfer) (cf. Fig. 1). With their widely matching spectroscopic properties (cf. Fig. 2), the combination of these dyes yielded excellent FRET efficiencies. Furthermore, fluorescence lifetime measurements revealed that the long fluorescence lifetime of the Ru complex was transferred to the Cy dye offering the possibility to measure the whole system in a time-resolved mode. The FRET system was established on double-stranded DNA (cf. Fig. 3) but it should also be generally applicable to other biomolecules. KW - Forster resonance energy transfer (FRET) system KW - DNA KW - Fluorescence KW - Ruthenium complexes Y1 - 2012 U6 - https://doi.org/10.1002/hlca.201100460 SN - 0018-019X VL - 95 IS - 4 SP - 543 EP - 555 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lippold, Holger A1 - Eidner, Sascha A1 - Kumke, Michael Uwe A1 - Lippmann-Pipke, Johanna T1 - Diffusion, degradation or on-site stabilisation - identifying causes of kinetic processes involved in metal-humate complexation JF - Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry N2 - The applicability of equilibrium models for humic-bound transport of toxic or radioactive metals is affected by kinetic processes leading to an increasing inertness of metal-humic complexes. The chemical background is not yet understood. It is widely believed that bound metals undergo an in-diffusion process within the humic colloids, changing from weaker to stronger binding sites. This work is focussed on the competition effect of Al(III) on complexation of Tb(III) or Eu(III) as analogues of trivalent actinides. By using ion exchange and spectroscopic methods, their bound fractions were determined for solutions of Al and humic acid that had been pre-equilibrated for different periods of time. Whilst the amount of bound Al remained unchanged, its blocking effect was found to increase over a time frame of 2 days, which corresponds to the kinetics of the increase in complex inertness reported in most pertinent studies. Thus, the derived "diffusion theory'' turned out to be inapplicable, since it cannot explain an increase in competition for the "initial'' sites. A delayed degradation of polynuclear species (as found for Fe) does not occur. Consequently, the temporal changes must be based on structural rearrangements in the vicinity of bound Al, complicating the exchange or access. Time-dependent studies by laser fluorescence spectroscopy (steady-state and time-resolved) yielded evidence of substantial alterations, which were, however, immediately induced and did not show any significant trend on the time scale of interest, suggesting that the stabilisation process is based on comparatively moderate changes. Y1 - 2012 U6 - https://doi.org/10.1016/j.apgeochem.2011.11.001 SN - 0883-2927 VL - 27 IS - 1 SP - 250 EP - 256 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Primus, Philipp-A. A1 - Kumke, Michael Uwe T1 - Flash photolysis study of complexes between salicylic acid and lanthanide ions in water JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - In the natural environment humic substances (HS) represent a major factor determining the speciation of metal ions, e.g., in the context of radionuclide migration. Here, due to their intrinsic sensitivity and selectivity, spectroscopic methods are often applied, requiring a fundamental understanding of the photophysical processes present in such HS-metal complexes. Complexes with different metal ions were studied using 2-hydroxybenzoic acid (2HB) as a model compound representing an important part of the chelating substructures in HS. In flash photolysis experiments under direct excitation of 2HB in the absence and the presence of different lanthanide ions, the generation and the decay of the 2HB triplet state, of the phenoxy radical, and of the solvated electron were monitored. Depending on the lanthanide ion different intracomplex processes were observed for these transient species including energy migration to and photoreduction of the lanthanide ion. The complexity of the intracomplex photophysical processes even for small molecules such as 2HB underlines the necessity to step-by-step approach the photochemical reactivity of HS by using suitable model compounds. Y1 - 2012 U6 - https://doi.org/10.1021/jp2043575 SN - 1089-5639 VL - 116 IS - 4 SP - 1176 EP - 1182 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Techen, Anne A1 - Hille, Carsten A1 - Dosche, Carsten A1 - Kumke, Michael Uwe T1 - Fluorescence study of drug-carrier interactions in CTAB/PBS buffer model systems JF - Journal of colloid and interface science N2 - The well-known cationic surfactant hexadecyltrimethylammonium bromide (CTAB) was used as a model carrier to study drug-carrier interactions with fluorescence probes (5-hexadecanoylaminofluorescein (HAF) and 2,10-bis-(3-aminopropyloxy)dibenzo[aj]perylene-8,16-dione (NIR 628) by applying ensemble as well as single molecule fluorescence techniques. The impact of the probes on the micelle parameters (critical micelle concentration, average aggregation number, hydrodynamic radius) was investigated under physiological conditions. In the presence of additional electrolytes, such as buffer, the critical micelle concentration decreased by a factor of about 10. In contrast, no influence of the probes on the critical micelle concentration and on average aggregation number was observed. The results show that HAF does not affect the characteristics of CTAB micelles. Analyzing fluorescence correlation spectroscopy data and time-resolved anisotropy decays in terms of the "two-step" in combination with the "wobbling-in-cone" model, it was proven that HAF and NIR 628 are differently associated with the micelles. Based on ensemble and single molecule fluorescence experiments, intra- and intermicellar energy transfer process between the two dyes were probed and characterized. KW - Hexadecyltrimethylammonium bromide KW - 5-Hexadecanoylaminofluorescein KW - 2,10-Bis-(3-aminopropyloxy)dibenzo[aj]perylene-8,16-dione KW - Fluorescence correlation spectroscopy KW - Fluorescence anisotropy KW - Single-molecule FRET Y1 - 2012 U6 - https://doi.org/10.1016/j.jcis.2012.03.063 SN - 0021-9797 VL - 377 SP - 251 EP - 261 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Xu, Hai-Bing A1 - Gessner, Andre A1 - Kumke, Michael Uwe A1 - Priebe, Magdalena A1 - Fromm, Katharina M. A1 - Taubert, Andreas T1 - A transparent, flexible, ion conductive, and luminescent PMMA ionogel based on a Pt/Eu bimetallic complex and the ionic liquid [Bmim][N(Tf)(2)] JF - Journal of materials chemistry N2 - Transparent, ion-conducting, luminescent, and flexible ionogels based on the room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide [Bmim][N(Tf)(2)], a PtEu2 chromophore, and poly(methylmethacrylate) (PMMA) have been prepared. The thermal stability of the PMMA significantly increases with IL incorporation. In particular, the onset weight loss observed at ca. 229 degrees C for pure PMMA increases to 305 degrees C with IL addition. The ionogel has a high ionic conductivity of 10(-3) S cm(-1) at 373 K and exhibits a strong emission in the red with a long average luminescence decay time of tau = 890 mu s. The resulting material is a new type of soft hybrid material featuring useful thermal, optical, and ion transport properties. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm15862k SN - 0959-9428 VL - 22 IS - 16 SP - 8110 EP - 8116 PB - Royal Society of Chemistry CY - Cambridge ER -