TY - JOUR A1 - Lemke, Karina A1 - Koetz, Joachim T1 - Polycation-capped CdS quantum dots synthesized in reverse microemulsions JF - Journal of nanomaterials N2 - This paper is focused on the formation and recovery of cadmium sulfide (CdS) nanoparticles in two different types of polycation-modified reverse microemulsions using low molecular weight poly(diallyldimethylammonium chloride) (PDADMAC) and poly(ethyleneimine) (PEI). Both polymers were incorporated in a quaternary w/o microemulsion consisting of water, toluene-pentanol (1 : 1), and sodium dodecyl sulfate (SDS), as well as in a ternary w/o microemulsion consisting of water, heptanol, and 3( N,N-dimethyl-dodecylammonio)-propanesulfonate (SB). UV-vis and fluorescence measurements in the microemulsion illustrate the capping effect of the polycations on the formation of the CdS quantum dots. The nanoparticles are redispersed in water and characterized by using UV-vis and fluorescence spectroscopy, in combination with dynamic light scattering. From the quaternary microemulsion, only nanoparticle aggregates of about 100 nm can be redispersed, but, from the ternary microemulsion, well-stabilized polycation-capped CdS quantum dots can be obtained. The results show that the electrostatic interactions between the polycation and the surfactant are of high relevance especially in the solvent evaporation and redispersion process. That means only that in the case of moderate polycation-surfactant interactions a redispersion of the polymer-capped CdS quantum dots without problems of aggregation is possible. Y1 - 2012 U6 - https://doi.org/10.1155/2012/478153 SN - 1687-4110 IS - 4 PB - Hindawi Publishing Corp. CY - New York ER - TY - JOUR A1 - Lemke, Karina A1 - Prietzel, Claudia Christina A1 - Koetz, Joachim T1 - Fluorescent gold clusters synthesized in a poly(ethyleneimine) modified reverse microemulsion JF - Journal of colloid and interface science N2 - This paper is focused on the formation of gold clusters in a tailor-made polyelectrolyte-modified reverse microemulsion using poly(ethyleneimine) (PEI) as a cationic polyelectrolyte. PEI incorporated into a ternary w/o microemulsion consisting of water/heptanol/zwitterionic surfactant 3-(N,N-dimethyl-dodecylammonio)-propanesulfonate (SB) acts as a reducing and stabilizing agent and shows an additional template effect. The nanoparticle synthesis is performed by a simple mixing of two microemulsions, one containing the PEI and the other one containing the gold chloride precursor. UV-vis measurements in the microemulsion show two pronounced absorption maxima, one at 360 nm and the other one at 520 nm, indicating two particle fractions. The absorption maximum at 360 nm in combination to the unique fluorescence properties indicate the formation of gold clusters. After a complete solvent evaporation the redispersed nanoparticles have been characterized by using UV-vis and fluorescence spectroscopy, in combination to dynamic light scattering and transmission electron microscopy (TEM). In addition to the gold nanoparticle fraction (>5 nm) the fluorescent gold cluster fraction (<2 nm) can be redispersed without particle aggregation. By means of asymmetric flow field flow fractionation (AF-FFF) two different cluster fractions with particle diameter (<2 nm) can be identified. KW - Microemulsion KW - Gold cluster KW - Field flow fractionation KW - Polymer capped gold nanoparticles Y1 - 2013 U6 - https://doi.org/10.1016/j.jcis.2012.11.057 SN - 0021-9797 VL - 394 SP - 141 EP - 146 PB - Elsevier CY - San Diego ER -