TY - JOUR A1 - Bastian, Philipp U. A1 - Robel, Nathalie A1 - Schmidt, Peter A1 - Schrumpf, Tim A1 - Günter, Christina A1 - Roddatis, Vladimir A1 - Kumke, Michael U. T1 - Resonance energy transfer to track the motion of lanthanide ions BT - what drives the intermixing in core-shell upconverting nanoparticles? JF - Biosensors : open access journal N2 - The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process. KW - upconversion nanoparticles KW - lanthanoid migration KW - lanthanides KW - core-shell KW - energy transfer Y1 - 2021 U6 - https://doi.org/10.3390/bios11120515 SN - 2079-6374 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hesse, Julia A1 - Klier, Dennis Tobias A1 - Sgarzi, Massimo A1 - Nsubuga, Anne A1 - Bauer, Christoph A1 - Grenzer, Joerg A1 - Hübner, Rene A1 - Wislicenus, Marcus A1 - Joshi, Tanmaya A1 - Kumke, Michael Uwe A1 - Stephan, Holger T1 - Rapid Synthesis of Sub-10nm Hexagonal NaYF4-Based Upconverting Nanoparticles using Therminol((R))66 JF - ChemistryOpen : including thesis treasury N2 - We report a simple one-pot method for the rapid preparation of sub-10nm pure hexagonal (-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol((R))66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCNPs. The upconversion (UC) luminescence properties of the nanocrystals were tuned by varying the concentrations of the dopants (Nd3+ and Yb3+ sensitizer ions and Er3+ activator ions). The size and phase-purity of the as-synthesized core and core-shell nanocrystals were assessed by using complementary transmission electron microscopy, dynamic light scattering, X-ray diffraction, and small-angle X-ray scattering studies. In-depth photophysical evaluation of the UCNPs was pursued by using steady-state and time-resolved luminescence spectroscopy. An enhancement in the UC intensity was observed if the nanocrystals, doped with optimized concentrations of lanthanide sensitizer/activator ions, were further coated with an inert/active shell. This was attributed to the suppression of surface-related luminescence quenching effects. KW - core-shell materials KW - lanthanides KW - nanostructures KW - photoluminescence KW - upconversion Y1 - 2018 U6 - https://doi.org/10.1002/open.201700186 SN - 2191-1363 VL - 7 IS - 2 SP - 159 EP - 168 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - König, Jana A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strauch, Peter T1 - [µ2-O,O′,Oʺ,Oʺ′-Bis(1,2-dithiooxalato-S,S′)nickel(II)]bis[-O,O′-bis(1,2-dithiooxalato-S,S′)-nickel(II)pentaquaholmium(III)]hydrate, [Ho2Ni3(dto)6(H2O)10] N2 - Planar bis(1,2-dithiooxalato)nickelate(II), [Ni(dto)]2− reacts in aqueous solutions with lanthanide ions (Ln3+) to form pentanuclear, hetero-bimetallic complexes of the general composition [{Ln(H2O)n}2{Ni(dto)2}3]·xH2O. (n = 4 or 5; x = 9–12). The complex [{Ho(H2O)5}2{Ni(dto)2}3]·10H2O, Ho2Ni3, was synthesized and characterized by single crystal X-ray structure analysis and powder diffraction. The Ho2Ni3 complex crystallizes as monoclinic crystals in the space group P21/c. The channels and cavities, appearing in the crystal packing of the complex molecules, are occupied by a varying amount of non-coordinated water molecules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 360 KW - lanthanides KW - holmium(III) KW - 1,2-dithiooxalate KW - crystal structure KW - nickel(II) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400598 ER - TY - THES A1 - Klier, Dennis Tobias T1 - Upconversion luminescence in Er-codoped NaYF4 nanoparticles T1 - Frequenzaufkonversion in Er-codotierten NaYF4 Nanopartikeln BT - fundamental photophysics and optimization for life science applications BT - fundamentale Photophysik und Optimierung für Anwendungen in den Lebenswissenschaften N2 - In the context of an increasing population of aging people and a shift of medical paradigm towards an individualized medicine in health care, nanostructured lanthanides doped sodium yttrium fluoride (NaYF4) represents an exciting class of upconversion nanomaterials (UCNM) which are suitable to bring forward developments in biomedicine and -biodetection. Despite the fact that among various fluoride based upconversion (UC) phosphors lanthanide doped NaYF4 is one of the most studied upconversion nanomaterial, many open questions are still remaining concerning the interplay of the population routes of sensitizer and activator electronic states involved in different luminescence upconversion photophysics as well as the role of phonon coupling. The collective work aims to explore a detailed understanding of the upconversion mechanism in nanoscaled NaYF4 based materials co-doped with several lanthanides, e.g. Yb3+ and Er3+ as the "standard" type upconversion nanoparticles (UCNP) up to advanced UCNP with Gd3+ and Nd3+. Especially the impact of the crystal lattice structure as well as the resulting lattice phonons on the upconversion luminescence was investigated in detail based on different mixtures of cubic and hexagonal NaYF4 nanoscaled crystals. Three synthesis methods, depending on the attempt of the respective central spectroscopic questions, could be accomplished in the following work. NaYF4 based upconversion nanoparticles doped with several combination of lanthanides (Yb3+, Er3+, Gd3+ and Nd3+) were synthesized successfully using a hydrothermal synthesis method under mild conditions as well as a co-precipitation and a high temperature co-precipitation technique. Structural information were gathered by means of X-ray diffraction (XRD), electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and inductively coupled plasma atomic emission spectrometry (ICP-OES). The results were discussed in detail with relation to the spectroscopic results. A variable spectroscopic setup was developed for multi parameter upconversion luminescence studies at various temperature 4 K to 328 K. Especially, the study of the thermal behavior of upconversion luminescence as well as time resolved area normalized emission spectra were a prerequisite for the detailed understanding of intramolecular deactivation processes, structural changes upon annealing or Gd3+ concentration, and the role of phonon coupling for the upconversion efficiency. Subsequently it became possible to synthesize UCNP with tailored upconversion luminescence properties. In the end, the potential of UCNP for life science application should be enunciated in context of current needs and improvements of a nanomaterial based optical sensors, whereas the "standard" UCNP design was attuned according to the special conditions in the biological matrix. In terms of a better biocompatibility due to a lower impact on biological tissue and higher penetrability for the excitation light. The first step into this direction was to use Nd3+ ions as a new sensitizer in tridoped NaYF4 based UCNP, whereas the achieved absolute and relative temperature sensitivity is comparable to other types of local temperature sensors in the literature. N2 - Ziel der Arbeit war es ein erweitertes Verständnis des Mechanismus der Lichtaufkonversion, sowie dessen gezielte Manipulation in verschiedenen Nanomaterialien auf Natriumyttrium-fluoridbasis zu erlangen. Die optischen Eigenschaften werden dabei durch eine gezielte Zusammenstellung verschiedener Lanthanoidionen hervorgerufen, welche während der Synthese in die Materialien eingebracht werden. Der Fokus lag hierbei in der Aufklärung des Zusammenspiels zwischen der Struktur der Materialien und deren Lichtaufkonver-sionsvermögen sowie dem Erlangen eines generellen Verständnisses der einzelnen Teilschritte des Lichtaufkonversionsmechanismus. Dabei wird das Licht, welches nach Anregung der Lanthanoidionen durch einen Laser von diesen emittiert wird, hinsichtlich der Farbzusammensetzung und des Abklingverhaltens der Lumineszenz untersucht. Diese Erkenntnisse geben sowohl einen Einblick in die verschiedenen Teilschritte des Lichtaufkonversionsmechanismus, als auch deren Korrelation zur Struktur der Nanomaterialien. Während der Arbeit wurde ein variabler Messplatz mit einer wellenlängendurchstimmbaren Anregungslichtquelle, einer Detektionseinheit mit hervorragender spektraler und zeitlicher Auflösung für die Messung des emittierten Lichtes sowie einer Temperiereinheit, mit der die Proben in einem Temperaturbereich von 4 Kelvin (-269,15 °C) bis 328 Kelvin (50 °C) temperiert werden können, aufgebaut. Die Proben wurden mithilfe der modernen Kopräzipitations- und Hydrothermalsynthese in verschiedenen Zusammensetzungen und Oberflächenmodifizierungen hergestellt, um sowohl Partikel für fundamentale Untersuchungen der Lichtaufkonversion verfügbar zu haben, als auch den hohen Anforderungen für Anwendungen in den Lebenswissenschaften gerecht zu werden. Die Reaktion fand bei hohen Temperaturen (160 °C bis 320 °C) unter Schutzgasatmosphäre statt und gewährleistete so die Bildung von hochkristallinen Partikeln, deren Größe stark mit der Synthesetemperatur korreliert. Mithilfe von zeitaufgelösten Lumineszenzuntersuchungen gelang ein sehr detaillierter Einblick in strukturelle Veränderungen der Nanopartikeln, welche durch klassische strukturanalytische Methoden, wie der Röntgenpulverdiffraktometrie, nicht in dem Maße möglich sind. Zudem konnte ein erheblicher Teil dazu beigetragen werden, das komplexe Zusammenspiel von Energietransportmechanismen, Gitterschwingungen und thermisch induzierten Prozessen zu verstehen. Zuletzt wurden, basierend auf der Vielzahl an gewonnenen Erkenntnissen, speziell designte Nanopartikel hergestellt. Die Farbe des Emissionslichts dieser Partikel wies dabei eine hohe Abhängigkeit von der Umgebungstemperatur auf. Auftretende Herausforderungen induziert durch das verwendete Anregungslicht im Nahinfrarotenbereich, wie das Aufheizen oder die zu hohe Absorption der Probe, wurden durch die Erweiterung des Aufkonversionssystems gelöst. Damit konnten beste Voraussetzungen für potentielle Anwendungen, wie zum Beispiel als Nanothermometer geschaffen werden. KW - Nanopartikel KW - nanoparticle KW - Frequenzaufkonversion KW - upconversion KW - Lanthanoide KW - lanthanides Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98486 ER -