TY - JOUR A1 - Herfurth, Christoph A1 - de Molina, Paula Malo A1 - Wieland, Christoph A1 - Rogers, Sarah A1 - Gradzielski, Michael A1 - Laschewsky, André T1 - One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution JF - Polymer Chemistry N2 - Multifunctional chain transfer agents for RAFT polymerisation were designed for the one-step synthesis of amphiphilic star polymers. Thus, hydrophobically end-capped 3- and 4-arm star polymers, as well as linear ones for reference, were made of the hydrophilic monomer N,N-dimethylacrylamide (DMA) in high yield with molar masses up to 150 000 g mol(-1), narrow molar mass distribution (PDI <= 1.2) and high end group functionality (similar to 90%). The associative telechelic polymers form transient networks of interconnected aggregates in aqueous solution, thus acting as efficient viscosity enhancers and rheology modifiers, eventually forming hydrogels. The combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and rheology experiments revealed that several molecular parameters control the structure and therefore the physical properties of the aggregates. In addition to the size of the hydrophilic block (maximum length for connection) and the length of the hydrophobic alkyl chain ends (stickiness), the number of arms (functionality) proved to be a key parameter. Y1 - 2012 U6 - https://doi.org/10.1039/c2py20126g SN - 1759-9954 VL - 3 IS - 6 SP - 1606 EP - 1617 PB - Royal Society of Chemistry CY - Cambridge ER - TY - CHAP A1 - Laschewsky, André A1 - Herfurth, Christoph A1 - Miasnikova, Anna A1 - Wieland, Christoph A1 - Wischerhoff, Erik A1 - Gradzielski, Michael A1 - de Molina, Paula Malo A1 - Weiss, Jan T1 - Stars and blocks tailoring polymeric rheology modifiers for aqueous media by controlled free radical polymerization T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2012 SN - 0065-7727 VL - 244 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Thuenemann, Andreas F. A1 - Klobes, Peter A1 - Wieland, Christoph A1 - Bruzzano, Stefano T1 - On the nanostructure of micrometer-sized cellulose beads JF - Analytical & bioanalytical chemistry N2 - The analysis of the porosity of materials is an important and challenging field in analytical chemistry. The gas adsorption and mercury intrusion methods are the most established techniques for quantification of specific surface areas, but unfortunately, dry materials are mandatory for their applicability. All porous materials that contain water and other solvents in their functional state must be dried before analysis. In this process, care has to be taken since the removal of solvent bears the risk of an incalculable alteration of the pore structure, especially for soft materials. In the present paper, we report on the use of small-angle X-ray scattering (SAXS) as an alternative analysis method for the investigation of the micro and mesopores within cellulose beads in their native, i.e., water-swollen state; in this context, they represent a typical soft material. We show that even gentle removal of the bound water reduces the specific surface area dramatically from 161 to 109 m(2) g(-1) in cellulose bead sample type MT50 and from 417 to 220 m(2) g(-1) in MT100. Simulation of the SAXS curves with a bimodal pore size distribution model reveals that the smallest pores with radii up to 10 nm are greatly affected by drying, whereas pores with sizes in the range of 10 to 70 nm are barely affected. The SAXS results were compared with Brunauer-Emmett-Teller results from nitrogen sorption measurements and with mercury intrusion experiments. KW - Small-angle X-ray scattering KW - Cellulose KW - Mesopores KW - Micropores KW - Porosimetry Y1 - 2011 U6 - https://doi.org/10.1007/s00216-011-5176-z SN - 1618-2642 VL - 401 IS - 4 SP - 1101 EP - 1108 PB - Springer CY - Heidelberg ER -