TY - JOUR A1 - Chen, Ye A1 - Song, Qilei A1 - Zhao, Junpeng A1 - Gong, Xiangjun A1 - Schlaad, Helmut A1 - Zhang, Guangzhao T1 - Betulin-Constituted multiblock amphiphiles for broad-spectrum protein resistance JF - ACS applied materials & interfaces N2 - Multiblock-like amphiphilic polyurethanes constituted by poly(ethylene oxide) and biosourced betulin are designed for antifouling and synthesized by a convenient organocatalytic route comprising tandem chain-growth and step-growth polymerizations. The doping density of betulin (D-B) in the polymer chain structure is readily varied by a mixed-initiator strategy. The spin-coated polymer films exhibit unique nanophase separation and protein resistance behaviors. Higher D-B leads to enhanced surface hydrophobicity and, unexpectedly, improved protein resistance. It is found that the surface holds molecular-level heterogeneity when D-B is substantially high due to restricted phase separation; therefore, broad-spectrum protein resistance is achieved despite considerable surface hydrophobicity. As D-B decreases, the distance between adjacent betulin units increases so that hydrophobic nanodomains are formed, which provide enough landing areas for relatively small-sized proteins to adsorb on the surface. KW - amphiphilic surface KW - antifouling KW - multiblock copolymer KW - organocatalytic polymerization KW - renewable resource Y1 - 2018 U6 - https://doi.org/10.1021/acsami.7b16255 SN - 1944-8244 VL - 10 IS - 7 SP - 6593 EP - 6600 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hu, Shuangyan A1 - Zhao, Junpeng A1 - Zhang, Guangzhao A1 - Schlaad, Helmut T1 - Macromolecular architectures through organocatalysis JF - Progress in Polymer Science N2 - In virtue of the rising demand for metal-free polymeric materials, organocatalytic polymerization has emerged and blossomed unprecedentedly in the past 15 years into an appealing research area and a powerful arsenal for polymer synthesis. In addition to the inherent merits as being metal-free, small molecule organocatalysts have also provided opportunities to develop alternative and, in many cases, more expedient synthetic approaches toward macromolecular architectures, that play a crucial role in shaping the properties of the obtained polymers. A majority of preliminary studies exploring for new catalysts, catalytic mechanisms and optimized polymerization conditions are extended to application of the catalytic systems on rational design and controlled synthesis of various macromolecular architectures. Such endeavors are described in this review, categorized by the architectural elements including chain structure (types, sequence and composition of monomeric units constituting the polymer chains), topological structure (the fashion different polymer chains are covalently attached to each other within the macromolecule) and functionality (position and amount of functional groups that endow the entire macromolecule with specific chemical, physico-chemical or biological properties). (C) 2017 Published by Elsevier B.V. KW - Organocatalytic polymerization KW - Metal-free polymerization KW - Macromolecular architecture KW - Controlled polymer synthesis Y1 - 2017 U6 - https://doi.org/10.1016/j.progpolymsci.2017.07.002 SN - 0079-6700 SN - 1873-1619 VL - 74 SP - 34 EP - 77 PB - Elsevier CY - Oxford ER -