TY - JOUR A1 - Choudhury, Arnab A1 - DeVine, Jessalyn A. A. A1 - Sinha, Shreya A1 - Lau, Jascha Alexander A1 - Kandratsenka, Alexander A1 - Schwarzer, Dirk A1 - Saalfrank, Peter A1 - Wodtke, Alec Michael T1 - Condensed-phase isomerization through tunnelling gateways JF - Nature : the international weekly journal of science N2 - Quantum mechanical tunnelling describes transmission of matter waves through a barrier with height larger than the energy of the wave(1). Tunnelling becomes important when the de Broglie wavelength of the particle exceeds the barrier thickness; because wavelength increases with decreasing mass, lighter particles tunnel more efficiently than heavier ones. However, there exist examples in condensed-phase chemistry where increasing mass leads to increased tunnelling rates(2). In contrast to the textbook approach, which considers transitions between continuum states, condensed-phase reactions involve transitions between bound states of reactants and products. Here this conceptual distinction is highlighted by experimental measurements of isotopologue-specific tunnelling rates for CO rotational isomerization at an NaCl surface(3,4), showing nonmonotonic mass dependence. A quantum rate theory of isomerization is developed wherein transitions between sub-barrier reactant and product states occur through interaction with the environment. Tunnelling is fastest for specific pairs of states (gateways), the quantum mechanical details of which lead to enhanced cross-barrier coupling; the energies of these gateways arise nonsystematically, giving an erratic mass dependence. Gateways also accelerate ground-state isomerization, acting as leaky holes through the reaction barrier. This simple model provides a way to account for tunnelling in condensed-phase chemistry, and indicates that heavy-atom tunnelling may be more important than typically assumed. Y1 - 2022 U6 - https://doi.org/10.1038/s41586-022-05451-0 SN - 0028-0836 SN - 1476-4687 VL - 612 IS - 7941 SP - 691 EP - 695 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER -