TY - JOUR A1 - Oertel, Jana A1 - Keller, Adrian A1 - Prinz, Julia A1 - Schreiber, Benjamin A1 - Huebner, Rene A1 - Kerbusch, Jochen A1 - Bald, Ilko A1 - Fahmy, Karim T1 - Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion JF - Scientific reports N2 - Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the "outer shape" of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of similar to 10 nm diameter containing a lipid bilayer similar to 5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. Y1 - 2016 U6 - https://doi.org/10.1038/srep26718 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Prinz, Julia A1 - Schreiber, Benjamin A1 - Olejko, Lydia A1 - Oertel, Jana A1 - Rackwitz, Jenny A1 - Keller, Adrian A1 - Bald, Ilko T1 - DNA origami substrates for highly sensitive surface-enhanced raman scattering JF - The journal of physical chemistry letters N2 - DNA nanotechnology holds great promise for the fabrication of novel plasmonic nanostructures and the potential to carry out single-molecule measurements using optical spectroscopy. Here, we demonstrate for the first time that DNA origami nanostructures can be exploited as substrates for surface-enhanced Raman scattering (SERS). Gold nanoparticles (AuNPs) have been arranged into dimers to create intense Raman scattering hot spots in the interparticle gaps. AuNPs (15 nm) covered with TAMRA-modified DNA have been placed at a nominal distance of 25 nm to demonstrate the formation of Raman hot spots. To control the plasmonic coupling between the nanoparticles and thus the field enhancement in the hot spot, the size of AuNPs has been varied from 5 to 28 nm by electroless Au deposition. By the precise positioning of a specific number of TAMRA molecules in these hot spots, SERS with the highest sensitivity down to the few-molecule level is obtained. Y1 - 2013 U6 - https://doi.org/10.1021/jz402076b SN - 1948-7185 VL - 4 IS - 23 SP - 4140 EP - 4145 PB - American Chemical Society CY - Washington ER -