TY - JOUR A1 - Schuermann, Robin A1 - Tanzer, Katrin A1 - Dabkowska, Iwona A1 - Denifl, Stephan A1 - Bald, Ilko T1 - Stability of the Parent Anion of the Potential Radiosensitizer 8-Bromoadenine Formed by Low-Energy (< 3 eV) Electron Attachment JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - 8-Bromoadenine ((8Br)A) is a potential DNA radiosensitizer for cancer radiation therapy due to its efficient interaction with low-energy electrons (LEEs). LEEs are a short-living species generated during the radiation damage of DNA by high-energy radiation as it is applied in cancer radiation therapy. Electron attachment to (8Br)A in the gas phase results in a stable parent anion below 3 eV electron energy in addition to fragmentation products formed by resonant exocyclic bond cleavages. Density functional theory (DFT) calculations of the (8Br)A(-) anion reveal an exotic bond between the bromine and the C8 atom with a bond length of 2.6 angstrom, where the majority of the charge is located on bromine and the spin is mainly located on the C8 atom. The detailed understanding of such long-lived anionic states of nucleobase analogues supports the rational development of new therapeutic agents, in which the enhancement of dissociative electron transfer to the DNA backbone is critical to induce DNA strand breaks in cancerous tissue. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.7b02130 SN - 1520-6106 VL - 121 SP - 5730 EP - 5734 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Rackwitz, Jenny A1 - Kopyra, Janina A1 - Dabkowska, Iwona A1 - Ebel, Kenny A1 - Rankovic, MiloS Lj. A1 - Milosavljevic, Aleksandar R. A1 - Bald, Ilko T1 - Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - 2-Fluoroadenine ((2F)A) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low-energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in (2F)A are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion-mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in (2F)A-containing oligonucleotides upon irradiation with LEEs. The incorporation of (2F)A into DNA results in an enhanced strand breakage. The strand-break cross sections are clearly energy dependent, whereas the strand-break enhancements by (2F)A at 5.5, 10, and 15 eV are very similar. Thus, (2F)A can be considered an effective radiosensitizer operative at a wide range of electron energies. KW - ab initio calculations KW - dissociative electron attachment KW - DNA origami KW - DNA radiation damage KW - fludarabine Y1 - 2016 U6 - https://doi.org/10.1002/anie.201603464 SN - 1433-7851 SN - 1521-3773 VL - 55 SP - 10248 EP - 10252 PB - Wiley-VCH CY - Weinheim ER -