TY - JOUR A1 - Lau, Skadi A1 - Liu, Yue A1 - Maier, Anna A1 - Braune, Steffen A1 - Gossen, Manfred A1 - Neffe, Axel T. A1 - Lendlein, Andreas T1 - Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation JF - MRS communications / a publication of the Materials Research Society N2 - In vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials. Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00072-6 SN - 2159-6867 VL - 11 IS - 5 SP - 559 EP - 567 PB - Springer CY - Berlin ER - TY - JOUR A1 - Lau, Skadi A1 - Maier, Anna A1 - Braune, Steffen A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Effect of endothelial culture medium composition on platelet responses to polymeric biomaterials JF - International journal of molecular sciences N2 - Near-physiological in vitro thrombogenicity test systems for the evaluation of blood-contacting endothelialized biomaterials requires co-cultivation with platelets (PLT). However, the addition of PLT has led to unphysiological endothelial cell (EC) detachment in such in vitro systems. A possible cause for this phenomenon may be PLT activation triggered by the applied endothelial cell medium, which typically consists of basal medium (BM) and nine different supplements. To verify this hypothesis, the influence of BM and its supplements was systematically analyzed regarding PLT responses. For this, human platelet rich plasma (PRP) was mixed with BM, BM containing one of nine supplements, or with BM containing all supplements together. PLT adherence analysis was carried out in six-channel slides with plasma-treated cyclic olefin copolymer (COC) and poly(tetrafluoro ethylene) (PTFE, as a positive control) substrates as part of the six-channel slides in the absence of EC and under static conditions. PLT activation and aggregation were analyzed using light transmission aggregometry and flow cytometry (CD62P). Medium supplements had no effect on PLT activation and aggregation. In contrast, supplements differentially affected PLT adherence, however, in a polymer- and donor-dependent manner. Thus, the use of standard endothelial growth medium (BM + all supplements) maintains functionality of PLT under EC compatible conditions without masking the differences of PLT adherence on different polymeric substrates. These findings are important prerequisites for the establishment of a near-physiological in vitro thrombogenicity test system assessing polymer-based cardiovascular implant materials in contact with EC and PLT. KW - cyclic olefin copolymer KW - poly(tetrafluoroethylene) KW - endothelial cells KW - platelets KW - in vitro thrombogenicity testing Y1 - 2021 U6 - https://doi.org/10.3390/ijms22137006 SN - 1422-0067 SN - 1661-6596 VL - 22 IS - 13 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Tartivel, Lucile A1 - Blocki, Anna M. A1 - Braune, Steffen A1 - Jung, Friedrich A1 - Behl, Marc A1 - Lendlein, Andreas T1 - An Inverse shape-memory hydrogel scaffold switching upon cooling in a tissue-tolerated temperature range JF - Advanced materials interfaces N2 - Tissue reconstruction has an unmet need for soft active scaffolds that enable gentle loading with regeneration-directing bioactive components by soaking up but also provide macroscopic dimensional stability. Here microporous hydrogels capable of an inverse shape-memory effect (iSME) are described, which in contrast to classical shape-memory polymers (SMPs) recover their permanent shape upon cooling. These hydrogels are designed as covalently photo cross-linked polymer networks with oligo(ethylene glycol)-oligo(propylene glycol)-oligo(ethylene glycol) (OEG-OPG-OEG) segments. When heated after deformation, the OEG-OPG-OEG segments form micelles fixing the temporary shape. Upon cooling, the micelles dissociate again, the deformation is reversed and the permanent shape is obtained. Applicability of this iSME is demonstrated by the gentle loading of platelet-rich plasma (PRP) without causing any platelet activation during this process. PRP is highly bioactive and is widely acknowledged for its regenerative effects. Hence, the microporous inverse shape-memory hydrogel (iSMH) with a cooling induced pore-size effect represents a promising candidate scaffold for tissue regeneration for potential usage in minimally invasive surgery applications. KW - active scaffold KW - critical micellation temperature KW - hydrogel KW - inverse KW - shape-memory effect KW - platelet-rich plasma Y1 - 2022 U6 - https://doi.org/10.1002/admi.202101588 SN - 2196-7350 VL - 9 IS - 6 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Piluso, Susanna A1 - Vukicevie, Radovan A1 - Nöchel, Ulrich A1 - Braune, Steffen A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation JF - European polymer journal N2 - While click chemistry reactions for biopolymer network formation are attractive as the defined reactions may allow good control of the network formation and enable subsequent functionalization, tailoring of gelatin network properties over a wide range of mechanical properties has yet to be shown. Here, it is demonstrated that copper-catalyzed alkyne-azide cycloaddition of alkyne functionalized gelatin with diazides gave hydrogel networks with properties tailorable by the ratio of diazide to gelatin and diazide rigidity. 4,4′-diazido-2,2′-stilbenedisulfonic acid, which has been used as rigid crosslinker, yielded hydrogels with Young’s moduli E of 50–390 kPa and swelling degrees Q of 150–250 vol.%, while the more flexible 1,8-diazidooctane resulted in hydrogels with E = 125–280 kPa and Q = 225–470 vol.%. Storage moduli could be varied by two orders of magnitude (G′ = 100–20,000 Pa). An indirect cytotoxicity test did not show cytotoxic properties. Even when employing 1:1 ratios of alkyne and azide moieties, the hydrogels were shown to contain both, unreacted alkyne groups on the gelatin backbone as well as dangling chains carrying azide groups as shown by reaction with functionalized fluorescein. The free groups, which can be tailored by the employed ratio of the reactants, are accessible for covalent attachment of drugs, as was demonstrated by functionalization with dexamethasone. The sequential network formation and functionalization with click chemistry allows access to multifunctional materials relevant for medical applications. KW - Click chemistry KW - Hydrogel KW - Polymer functionalization KW - Biopolymer KW - Rheology KW - Multifunctionality Y1 - 2018 U6 - https://doi.org/10.1016/j.eurpolymj.2018.01.017 SN - 0014-3057 SN - 1873-1945 VL - 100 SP - 77 EP - 85 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Reinthaler, Markus A1 - Johansson, Johan Backemo A1 - Braune, Steffen A1 - Al-Hindwan, Haitham Saleh Ali A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Shear-induced platelet adherence and activation in an in-vitro dynamic multiwell-plate system JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Circulating blood cells are prone to varying flow conditions when contacting cardiovascular devices. For a profound understanding of the complex interplay between the blood components/cells and cardiovascular implant surfaces, testing under varying shear conditions is required. Here, we study the influence of arterial and venous shear conditions on the in vitro evaluation of the thrombogenicity of polymer-based implant materials. Medical grade poly(dimethyl siloxane) (PDMS), polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) films were included as reference materials. The polymers were exposed to whole blood from healthy humans. Blood was agitated orbitally at low (venous shear stress: 2.8 dyne. cm(-2)) and high (arterial shear stress: 22.2 dyne .cm(-2)) agitation speeds in a well-plate based test system. Numbers of non-adherent platelets, platelet activation (P-Selectin positive platelets), platelet function (PFA100 closure times) and platelet adhesion (laser scanning microscopy (LSM)) were determined. Microscopic data and counting of the circulating cells revealed increasing numbers of material-surface adherent platelets with increasing agitation speed. Also, activation of the platelets was substantially increased when tested under the high shear conditions (P-Selectin levels, PFA-100 closure times). At low agitation speed, the platelet densities did not differ between the three materials. Tested at the high agitation speed, lowest platelet densities were observed on PDMS, intermediate levels on PET and highest on PTFE. While activation of the circulating platelets was affected by the implant surfaces in a similar manner, PFA closure times did not reflect this trend. Differences in the thrombogenicity of the studied polymers were more pronounced when tested at high agitation speed due to the induced shear stresses. Testing under varying shear stresses, thus, led to a different evaluation of the implant thrombogenicity, which emphasizes the need for testing under various flow conditions. Our data further confirmed earlier findings where the same reference implants were tested under static (and not dynamic) conditions and with fresh human platelet rich plasma instead of whole blood. This supports that the application of common reference materials may improve inter-study comparisons, even under varying test conditions. Y1 - 2019 U6 - https://doi.org/10.3233/CH-189410 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 183 EP - 191 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Kuhnla, A. A1 - Reinthaler, Markus A1 - Braune, Steffen A1 - Maier, A. A1 - Pindur, Gerhard A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Spontaneous and induced platelet aggregation in apparently healthy subjects in relation to age JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Thrombotic disorders remain the leading cause of mortality and morbidity, despite the fact that anti-platelet therapies and vascular implants are successfully used today. As life expectancy is increasing in western societies, the specific knowledge about processes leading to thrombosis in elderly is essential for an adequate therapeutic management of platelet dysfunction and for tailoring blood contacting implants. This study addresses the limited available data on platelet function in apparently healthy subjects in relation to age, particularly in view of subjects of old age (80-98 years). Apparently healthy subjects between 20 and 98 years were included in this study. Platelet function was assessed by light transmission aggregometry and comprised experiments on spontaneous as well as ristocetin-, ADP- and collagen-induced platelet aggregation. The data of this study revealed a non-linear increase in the maximum spontaneous platelet aggregation (from 3.3% +/- 3.3% to 10.9% +/- 5.9%). The maximum induced aggregation decreased with age for ristocetin (from 85.8% +/- 7.2% to 75.0% +/- 7.8%), ADP (from 88.5% +/- 4.6% to 64.8% +/- 7.3%) and collagen (from 89.5% +/- 3.0% to 64.0% +/- 4.0%) in a non-linear manner (linear regression analysis). These observations indicate that during aging, circulating platelets become increasingly activated but lose their full aggregatory potential, a phenomenon that was earlier termed "platelet exhaustion". In this study we extended the limited existing data for spontaneous and induced platelet aggregation of apparently healthy donors above the age of 75 years. The presented data indicate that the extrapolation of data from a middle age group does not necessarily predict platelet function in apparently healthy subjects of old age. It emphasizes the need for respective studies to improve our understanding of thrombotic processes in elderly humans. Y1 - 2019 U6 - https://doi.org/10.3233/CH-199006 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 425 EP - 435 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Braune, Steffen A1 - Latour, Robert A. A1 - Reinthaler, Markus A1 - Landmesser, Ulf A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - In Vitro Thrombogenicity Testing of Biomaterials JF - Advanced healthcare materials N2 - The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed. KW - biomaterials KW - blood tests KW - implants KW - in vitro KW - thrombogenicity Y1 - 2019 U6 - https://doi.org/10.1002/adhm.201900527 SN - 2192-2640 SN - 2192-2659 VL - 8 IS - 21 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Braune, Steffen A1 - Gross, M. A1 - Walter, M. A1 - Zhou, Shengqiang A1 - Dietze, Siegfried A1 - Rutschow, S. A1 - Lendlein, Andreas A1 - Tschoepe, C. A1 - Jung, Friedrich T1 - Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials JF - Journal of biomedical materials research : an official journal of the Society for Biomaterials, the Japanese Society for Biomaterials; the Australian Society for Biomaterials N2 - On the basis of the clinical studies in patients with coronary artery disease (CAD) presenting an increased percentage of activated platelets, we hypothesized that hemocompatibility testing utilizing platelets from healthy individuals may result in an underestimation of the materials' thrombogenicity. Therefore, we investigated the interaction of polymer-based biomaterials with platelets from CAD patients in comparison to platelets from apparently healthy individuals. In vitro static thrombogenicity tests revealed that adherent platelet densities and total platelet covered areas were significantly increased for the low (polydimethylsiloxane, PDMS) and medium (Collagen) thrombogenic surfaces in the CAD group compared to the healthy subjects group. The area per single platelet—indicating the spreading and activation of the platelets—was markedly increased on PDMS treated with PRP from CAD subjects. This could not be observed for collagen or polytetrafluoroethylene (PTFE). For the latter material, platelet adhesion and surface coverage did not differ between the two groups. Irrespective of the substrate, the variability of these parameters was increased for CAD patients compared to healthy subjects. This indicates a higher reactivity of platelets from CAD patients compared to the healthy individuals. Our results revealed, for the first time, that utilizing platelets from apparently healthy donors bears the risk of underestimating the thrombogenicity of polymer-based biomaterials. KW - platelets KW - biomaterials KW - hemocompatibility KW - cardiovascular disease KW - cardiovascular implant Y1 - 2016 U6 - https://doi.org/10.1002/jbm.b.33366 SN - 1552-4973 SN - 1552-4981 VL - 104 SP - 210 EP - 217 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Braune, Steffen A1 - Froehlich, G. M. A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Effect of temperature on platelet adherence JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - BACKGROUND: Thrombogenicity is one of the main parameters tested in vitro to evaluate the hemocompatibility of artificial surfaces. While the influence of the temperature on platelet aggregation has been addressed by several studies, the temperature influence on the adherence of platelets to body foreign surfaces as an important aspect of biomedical device handling has not yet been explored. Therefore, we analyzed the influence of two typically applied incubation-temperatures (22 degrees C and 37 degrees C) on the adhesion of platelets to biomaterials. MATERIAL AND METHODS: Thrombogenicity of three different polymers - medical grade poly(dimethyl siloxane) (PDMS), polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) - were studied in an in vitro static test. Platelet adhesion was studied with stringently characterized blood from apparently healthy subjects. Collection of whole blood and preparation of platelet rich plasma (PRP) was carried out at room temperature (22 degrees C). PRP was incubated with the polymers either at 22 degrees C or 37 degrees C. Surface adherent platelets were fixed, fluorescently labelled and assessed by an image-based approach. RESULTS AND DISCUSSION: Differences in the density of adherent platelets after incubation at 22 degrees C and 37 degrees C occurred on PDMS and PET. Similar levels of adherent platelets were observed on the very thrombogenic PTFE. The covered surface areas per single platelet were analyzed to measure the state of platelet activation and revealed no differences between the two incubation temperatures for any of the analyzed polymers. Irrespective of the observed differences between the low and medium thrombogenic PDMS and PET and the higher variability at 22 degrees C, the thrombogenicity of the three investigated polymers was evaluated being comparable at both incubation temperatures. KW - Biomaterial KW - thrombogenicity KW - platelet adhesion KW - platelet activation KW - temperature Y1 - 2016 U6 - https://doi.org/10.3233/CH-152028 SN - 1386-0291 SN - 1875-8622 VL - 61 SP - 681 EP - 688 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Neffe, Axel T. A1 - von Rüsten-Lange, Maik A1 - Braune, Steffen A1 - Lützow, Karola A1 - Roch, Toralf A1 - Richau, Klaus A1 - Krüger, Anne A1 - Becherer, Tobias A1 - Thünemann, Andreas F. A1 - Jung, Friedrich A1 - Haag, Rainer A1 - Lendlein, Andreas T1 - Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility JF - Journal of materials chemistry : B, Materials for biology and medicine N2 - Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo-and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials. Y1 - 2014 U6 - https://doi.org/10.1039/c4tb00184b SN - 2050-750X SN - 2050-7518 VL - 2 IS - 23 SP - 3626 EP - 3635 PB - Royal Society of Chemistry CY - Cambridge ER -