TY - JOUR A1 - Chea, Sany A1 - Schade, Kristin A1 - Reinicke, Stefan A1 - Bleul, Regina A1 - Rosencrantz, Ruben R. T1 - Synthesis and self-assembly of cytidine- and guanosine-based copolymers JF - Polymer Chemistry N2 - The base pairing property and the "melting" behavior of oligonucleotides can take advantage to develop new smart thermoresponsive and programmable materials. Complementary cytidine- (C) and guanosine- (G) based monomers were blockcopolymerized using RAFT polymerization technique with poly-(N-(2-hydroxypropyl) methacrylamide) (pHPMA) as the hydrophilic macro chain transfer agent (macro-CTA). C-C, G-G and C-G hydrogen bond interactions of blockcopolymers with respectively C and G moieties have been investigated using SEM, DLS and UV-Vis. Mixing and heating both complementary copolymers resulted in reforming new aggregates. Due to the ribose moiety of the isolated nucleoside-bearing blockcopolymers, the polarity is increased for better solubility. Self-assembly investigations of these bioinspired compounds are the crucial basis for the development of potential future drug delivery systems. Y1 - 2022 U6 - https://doi.org/10.1039/d2py00615d SN - 1759-9954 SN - 1759-9962 VL - 13 IS - 35 SP - 5058 EP - 5067 PB - Royal Society of Chemistry CY - Cambridge ER -