TY - GEN A1 - Wolff, Christian Michael A1 - Canil, Laura A1 - Rehermann, Carolin A1 - Nguyen, Ngoc Linh A1 - Zu, Fengshuo A1 - Ralaiarisoa, Maryline A1 - Caprioglio, Pietro A1 - Fiedler, Lukas A1 - Stolterfoht, Martin A1 - Kogikoski, Junior, Sergio A1 - Bald, Ilko A1 - Koch, Norbert A1 - Unger, Eva L. A1 - Dittrich, Thomas A1 - Abate, Antonio A1 - Neher, Dieter T1 - Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445−1456) T2 - ACS nano Y1 - 2020 U6 - https://doi.org/10.1021/acsnano.0c08081 SN - 1936-0851 SN - 1936-086X VL - 14 IS - 11 SP - 16156 EP - 16156 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Saliba, Michael A1 - Correa-Baena, Juan-Pablo A1 - Wolff, Christian Michael A1 - Stolterfoht, Martin A1 - Phung, Thi Thuy Nga A1 - Albrecht, Steve A1 - Neher, Dieter A1 - Abate, Antonio T1 - How to Make over 20% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures JF - Chemistry of materials : a publication of the American Chemical Society N2 - Perovskite solar cells (PSCs) are currently one of the most promising photovoltaic technologies for highly efficient and cost-effective solar energy production. In only a few years, an unprecedented progression of preparation procedures and material compositions delivered lab-scale devices that have now reached record power conversion efficiencies (PCEs) higher than 20%, competing with most established solar cell materials such as silicon, CIGS, and CdTe. However, despite a large number of researchers currently involved in this topic, only a few groups in the world can reproduce >20% efficiencies on a regular n-i-p architecture. In this work, we present detailed protocols for preparing PSCs in regular (n-i-p) and inverted (p-i-n) architectures with >= 20% PCE. We aim to provide a comprehensive, reproducible description of our device fabrication , protocols. We encourage the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories. A better reporting standard may, in turn, accelerate the development of perovskite solar cells and related research fields. Y1 - 2018 U6 - https://doi.org/10.1021/acs.chemmater.8b00136 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 13 SP - 4193 EP - 4201 PB - American Chemical Society CY - Washington ER -