TY - JOUR A1 - Titov, Evgenii T1 - On the low-lying electronically excited states of azobenzene dimers BT - Transition density matrix analysis JF - Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International N2 - Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest pi pi* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used. KW - azobenzene KW - dimer KW - transition density matrix KW - exciton KW - charge transfer KW - excited states KW - TD-DFT KW - ADC(2) Y1 - 2021 U6 - https://doi.org/10.3390/molecules26144245 SN - 1420-3049 VL - 26 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Titov, Evgenii A1 - Sharma, Anjali A1 - Lomadze, Nino A1 - Saalfrank, Peter A1 - Santer, Svetlana A1 - Bekir, Marek T1 - Photoisomerization of an azobenzene-containing surfactant within a micelle JF - ChemPhotoChem N2 - Photosensitive azobenzene-containing surfactants have attracted great attention in past years because they offer a means to control soft-matter transformations with light. At concentrations higher than the critical micelle concentration (CMC), the surfactant molecules aggregate and form micelles, which leads to a slowdown of the photoinduced trans -> cis azobenzene isomerization. Here, we combine nonadiabatic dynamics simulations for the surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the reaction slowdown. Our simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles. We also observe a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans -> cis switching in micelles of the azobenzene-containing surfactants. KW - azobenzene KW - micelles KW - photoswitches KW - rate constants KW - surfactants KW - surface hopping Y1 - 2021 U6 - https://doi.org/10.1002/cptc.202100103 SN - 2367-0932 VL - 5 IS - 10 SP - 926 EP - 932 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ryabchun, Alexander A1 - Sakhno, Oksana A1 - Stumpe, Joachim A1 - Bobrovsky, Alexey T1 - Full-Polymer Cholesteric Composites for Transmission and Reflection Holographic Gratings JF - Advanced optical materials N2 - A new type of self-organized materials based on cholesteric networks filled with photoactive side-chain copolymer is being developed. Supramolecular helical structure of cholesteric polymer network resulting in the selective reflection is used as a photonic scaffold. Photochromic azobenzene-containing nematic copolymer is embedded in cholesteric scaffold and utilized as a photoactive media for optical pattering. 1D and 2D transmission diffraction gratings are successfully recorded in composite films by holographic technique. For the first time the possibility to create selective reflection gratings in cholesteric material mimicking the natural optical properties of cholesteric mesophase is demonstrated. That enables the coexistence of two selective gratings, where one has an intrinsic cholesteric periodic helical structure and the other is a holographic grating generated in photochromic polymer. The full-polymer composites provide high light-induced optical anisotropy due to effective photo-orientation of side-chain fragments of the azobenzene-containing liquid crystalline polymer, and prevent the degradation of the helical superstructure maintaining all optical properties of cholesteric mesophase. The proposed class of optical materials could be easily applied to a broad range of polymeric materials with specific functionality. The versatility of the adjustment and material preprogramming combined with high optical performance makes these materials a highly promising candidate for modern optical and photonic applications. KW - azobenzene KW - cholesteric scaffolds KW - holography KW - LC polymer KW - polarization diffraction grating KW - reflection grating Y1 - 2017 U6 - https://doi.org/10.1002/adom.201700314 SN - 2195-1071 VL - 5 SP - 376 EP - 379 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Titov, Evgenii T1 - Quantum chemistry and surface hopping dynamics of azobenzenes T1 - Quantenchemie und Surface Hopping Dynamik von Azobenzolen BT - free and constrained models BT - freie und eingeschränkte Modelle N2 - This cumulative doctoral dissertation, based on three publications, is devoted to the investigation of several aspects of azobenzene molecular switches, with the aid of computational chemistry. In the first paper, the isomerization rates of a thermal cis → trans isomerization of azobenzenes for species formed upon an integer electron transfer, i.e., with added or removed electron, are calculated from Eyring’s transition state theory and activation energy barriers, computed by means of density functional theory. The obtained results are discussed in connection with an experimental study of the thermal cis → trans isomerization of azobenzene derivatives in the presence of gold nanoparticles, which is demonstrated to be greatly accelerated in comparison to the same isomerization reaction in the absence of nanoparticles. The second paper is concerned with electronically excited states of (i) dimers, composed of two photoswitchable units placed closely side-by-side, as well as (ii) monomers and dimers adsorbed on a silicon cluster. A variety of quantum chemistry methods, capable of calculating molecular electronic absorption spectra, based on density functional and wave function theories, is employed to quantify changes in optical absorption upon dimerization and covalent grafting to a surface. Specifically, the exciton (Davydov) splitting between states of interest is determined from first-principles calculations with the help of natural transition orbital analysis, allowing for insight into the nature of excited states. In the third paper, nonadiabatic molecular dynamics with trajectory surface hopping is applied to model the photoisomerization of azobenzene dimers, (i) for the isolated case (exhibiting the exciton coupling between two molecules) as well as (ii) for the constrained case (providing the van der Waals interaction with environment in addition to the exciton coupling between two monomers). For the latter, the additional azobenzene molecules, surrounding the dimer, are introduced, mimicking a densely packed self-assembled monolayer. From obtained results it is concluded that the isolated dimer is capable of isomerization likewise the monomer, whereas the steric hindrance considerably suppresses trans → cis photoisomerization. Furthermore, the present dissertation comprises the general introduction describing the main features of the azobenzene photoswitch and objectives of this work, theoretical basis of the employed methods, and discussion of gained findings in the light of existing literature. Also, additional results on (i) activation parameters of the thermal cis → trans isomerization of azobenzenes, (ii) an approximate scheme to account for anharmonicity of molecular vibrations in calculation of the activation entropy, as well as (iii) absorption spectra of photoswitch–silicon composites obtained from time-demanding wave function-based methods are presented. N2 - Die vorliegende kumulative Dissertationsschrift basiert auf drei wissenschaftlichen Publikationen und beschäftigt sich mit der computerchemischen Erforschung von molekularen Azobenzol-Schaltern. Die erste Publikation behandelt die thermische cis → trans Isomerisierung von Azobenzol durch einen Elektronentransfer (ein Elektron wird hinzugefügt oder entnommen). Dabei ist die Berechnung der Isomerisierungsrate des Elektronenübergangs nach der Eyringschen Theorie des Übergangszustands unter Einsatz von Aktivierungsenenergien durchgeführt worden. Die Letzteren sind mittels Dichtefunktionaltheorie berechnet worden. Die daraus erhaltenen Ergebnisse sind in Zusammenhang mit experimentellen Untersuchungen der thermische cis → trans Isomerisierung von Azobenzol-Derivaten in Lösung mit und ohne Goldnanopartikeln diskutiert worden. Die thermische Isomerisierung in Anwesenheit der Goldnanopartikeln läuft stark beschleunigt ab. Die zweite Publikation beschäftigt sich mit elektronisch angeregten Zuständen von (i) Dimeren bestehend aus zwei schaltbaren Einheiten, die dicht nebeneinander platziert sind, sowie (ii) Monomeren und Dimeren, die an einen Siliziumcluster adsorbiert sind. Mehrere quantenchemische Methoden basierend auf Dichtefunktionaltheorie und Wellenfunktionstheorie sind zur Berechnung der molekularen elektronischen Absorptionsspektren verwendet worden. Dadurch sind die Änderungen in der optischen Absorption sowohl bei der Dimerisierung, als auch beim kovalenten Anbinden an die Oberfläche bestimmt worden. Dazu ist die exzitonische Aufspaltung (Davydov splitting) zwischen den angeregten Zuständen aus ersten Prinzipien unter Verwendung von speziellen Orbitalen für Übergangszustände (natural transition orbitals) berechnet worden. Dadurch wird ein Einblick in die Natur der angeregten Zuständen erreicht. In der dritten Publikation ist eine nicht-adiabatische Molekulardynamik-Simulation unter Anwendung von trajectory surface hopping durchgeführt worden, um die Photoisomerisirung von Azobenzol-Dimeren zu modellieren. Dabei sind (i) ein isoliertes sowie (ii) ein Dimer in der Monolage betrachtet worden. Es sind die exzitonische Kopplung zwischen den zwei Molekülen, sowie, im Falle der Monolage, auch Van-der-Waals-Wechselwirkungen berücksicht worden. Die Ergebnisse weisen darauf hin, dass ein isoliertes Dimer gleichermaßen isomerisierungsfähig wie ein Monomer ist, wobei die cis → trans Photoisomerisierung durch die sterische Hinderung erheblich unterdrückt wird. Außerdem beinhaltet die darliegende Dissertationsschrift eine allgemeine Einführung, theoretische Grundlagen der verwendeten Methoden und die Diskussion der erhaltenen Ergebnisse mit Blick auf die vorhandene Literatur. Ferner sind zusätzliche Ergebnisse bezüglich der folgenden Aspekte dargestellt: (i) Aktivierungsparameter der thermischen cis → trans Isomerisierung von Azobenzol; (ii) ein Näherungsverfahren zur Berücksichtigung der Anharmonizität von Molekülschwingungen bei Berechnung der Aktivierungsentropie; (iii) Absorptionspektren von Photoschalter-Silizium-Kompositen berechnet mithilfe von zeitaufwändigen Wellenfunktions-basierten Methoden. KW - quantum chemistry KW - surface hopping dynamics KW - azobenzene KW - Quantenchemie KW - Surface Hopping Dynamik KW - Azobenzol Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394610 ER - TY - JOUR A1 - Ryabchun, Alexander A1 - Raguzin, Ivan A1 - Stumpe, Joachim A1 - Shibaev, Valery A1 - Bobrovsky, Alexey T1 - Cholesteric Polymer Scaffolds Filled with Azobenzene-Containing Nematic Mixture with Phototunable Optical Properties JF - Scientific reports N2 - The past two decades witnessed tremendous progress in the field of creation of different types of responsive materials. Cholesteric polymer networks present a very promising class of smart materials due to the combination of the unique optical properties of cholesteric mesophase and high mechanical properties of polymer networks. In the present work we demonstrate the possibility of fast and reversible photocontrol of the optical properties of cholesteric polymer networks. Several cholesteric photopolymerizable mixtures are prepared, and porous cholesteric network films with different helix pitches are produced by polymerization of these mixtures. An effective and simple method of the introduction of photochromic azobenzene-containing nematic mixture capable of isothermal photoinducing the nematic isotropic phase transition into the porous polymer matrix is developed, It is found that cross-linking density and degree of polymer network filling with a photochromic nematic mixture strongly influence the photo-optical behavior of the obtained composite films. In particular, the densely cross-linked films are characterized by a decrease in selective light reflection bandwidth, whereas weakly cross-linked systems display two processes: the shift of selective light reflection peak and decrease of its width. It is noteworthy that the obtained cholesteric materials are shown to be very promising for the variety applications in optoelectronics and photonics. KW - liquid crystalline polymer KW - azobenzene KW - cholesteric phase KW - phototunable optical properties KW - selective light reflection KW - LC composites Y1 - 2016 U6 - https://doi.org/10.1021/acsami.6b09642 SN - 1944-8244 VL - 8 SP - 27227 EP - 27235 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Miasnikova, Anna A1 - Benitez-Montoya, Carlos Adrian A1 - Laschewsky, André T1 - Counterintuitive photomodulation of the thermal phase transition of poly(methoxy diethylene glycol acrylate) in aqueous solution by trans-cis isomerization of Copolymerized Azobenzenes JF - Macromolecular chemistry and physics N2 - The non-ionic monomer (methoxy diethylene glycol) acrylate is copolymerized with its azodye-functionalized acrylate analogue using reversible addition-fragmentation chain transfer (RAFT) polymerization. Copolymerization is increasingly difficult with increasing amounts of the azo-dye-bearing monomer. The resulting water-soluble polymers are thermosensitive, exhibiting lower critical solution temperature (LCST) behavior, which can be modulated by the photoinduced trans-cis isomerization of the dye. While already small contents of the hydrophobic azobenzene group reduce the phase-transition temperatures of the copolymers strongly, photoisomerization of the apolar trans-state to the more-polar cis-state has only a small effect, and decreases rather than increases the cloud points. KW - azobenzene KW - photoisomerization KW - statistical copolymers KW - thermoresponsive materials KW - water-soluble polymers Y1 - 2013 U6 - https://doi.org/10.1002/macp.201300203 SN - 1022-1352 VL - 214 IS - 13 SP - 1504 EP - 1514 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Dokić, Jadranka T1 - Quantum mechanical study of molecular switches : electronic structure, kinetics and dynamical aspects T1 - Quantenmechanische Studie von molekularen Schaltern : Elektronische Struktur, Kinetik und dynamische Aspekte N2 - Molecular photoswitches are attracting much attention lately mostly because of their possible applications in nano technology, and their role in biology. One of the widely studied representatives of photochromic molecules is azobenzene (AB). With light, by a static electric field, or with tunneling electrons this specie can be "switched" from the flat and energetically more stable trans form, into the compact cis form. The back reaction can be induced optically or thermally. Quantum chemical calculations, mostly based on density functional theory, on the AB molecule, AB derivatives and related systems are presented. All the calculations were done for isolated species, however, with implications for latest experimental results aiming at the switching of surface mounted ABs. In some of these experiments, it is assumed that the switching process is substrate mediated, by attaching an electron or a hole to the adsorbate forming short-lived anion or cation resonances. Therefore, we calculated also cationic and anionic ABs in this work. An influence of external electric fields on the potential energy surfaces, was also studied. Further, by the type, number and positioning of various substituent groups, systematic changes on activation energies and rates for the thermal cis-to-trans isomerization can be enforced. The nature of the transition state for ground state isomerization was investigated. Applying Eyring's transition state theory, trends in activation energies and rates were predicted and are, where a comparison was possible, in good agreement with experimental data. Further, thermal isomerization was studied in solution, for which a polarizable continuum model was employed. The influence of substitution and an environment leaves its traces on structural properties of molecules and quantitative appearance of calculated UV/Vis spectra, as well. Finally, an explicit treatment of a solid substrate was demonstrated for the conformational switching, by scanning tunneling microscope, of a 1,5-cyclooctadiene (COD) molecule at a Si(001) surface, treated by a cluster model. At first, we studied energetics and potential energy surfaces along relevant switching coordinates by quantum chemical calculations, followed by the switching dynamics using wave packet methods. We show that, in spite the simplicity of the model, our calculations support the switching of adsorbed COD, by inelastic electron tunneling at low temperatures. N2 - Um den technologischen Fortschritt zu gewährleisten, ist man in vielen technischen Gebieten auf der Suche nach neuen und leistungsfähigeren Materialien. In der Computer- und Informationstechnologie folgte daraus die stetige Miniaturisierung von Bauelementen. Molekulare Photoschalter sind häufig an biologischen Prozessen beteiligt und äußerst vielversprechend, auf diesem Gebiet Anwendung zu finden. Ein sehr umfangreich studiertes photochromes Molekül ist Azobenzol (AB). Diese Spezien können durch Licht, statische elektrische Felder oder elektronisches Tunneln von der energetisch stabilen trans Form zur geometrisch kompakten cis Form "geschaltet" werden. Die Rückreaktion kann optisch oder thermisch erfolgen. In dieser Arbeit werden vorwiegend auf der Dichtefunktionaltheorie beruhende quantenchemische Rechnungen von AB, AB-Derivaten und verwandten Systemen vorgestellt. Alle Rechnungen betrachten isolierte Moleküle, werden jedoch in Zusammenhang mit neuesten experimentellen Ergebnissen zu oberflächengebundenen AB-Schaltern gestellt. In einigen dieser Experimente wird angenommen, dass der Schaltprozess substratvermittelt erfolgt, indem dem Adsorbat ein Elektron zugeführt oder entzogen und so eine kurzlebige anionische oder kationische Resonanz erzeugt wird. Daher werden sowohl ionische AB berechnet als auch der Einfluss eines externen elektrischen Feldes auf die Potentialhyperfläche studiert. Weiterhin können Aktivierungsenergie und Reaktionsrate der thermischen cis-trans-Isomerisierung durch Art, Anzahl und Position verschiedener Substituenten variieren. Die Natur des Übergangszustandes wird daher intensiv erforscht. Mit Hilfe der Theorie des Übergangszustandes nach Eyring werden Reaktionsraten prognostiziert, welche gut mit experimentellen Daten übereinstimmen. Daneben wird die thermische Isomerisierung in einem Lösungsmittel unter Verwendung des polarizable continuum model untersucht, da der Einfluss des Substituenten und die Anwesenheit einer Umgebung zu Veränderungen der strukturellen Eigenschaften der Moleküle und dem quantitativen Verlauf der berechneten UV/Vis-Spektren führen. Abschließend wird unter expliziter Einbeziehung eines festen Substrates das elektronisch getriebene konformale Schalten von 1,5-Cyclooctadien (COD) an einer Si(001)-Oberfläche demonstriert. Zunächst wird die Energetik und die Potentialhyperfläche entlang der relevanten Schaltkoordinaten durch quantenchemische Rechnungen ermittelt und das Schaltverhalten durch Wellenpaketmethoden beschrieben. Trotz der Einfachheit wird gezeigt, dass ein derartiges Modell das elektronische Schalten von adsorbiertem COD bei niedrigen Temperaturen gut beschreibt. KW - molekulare Schalter KW - Azobenzene KW - molecular switches KW - azobenzene Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-41796 ER -