TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Balk, Maria A1 - Peng, Xingzhou A1 - Lendlein, Andreas T1 - Shape-programmable architectured hydrogels sensitive to ultrasound JF - Macromolecular rapid communications N2 - On-demand motion of highly swollen polymer systems can be triggered by changes in pH, ion concentrations, or by heat. Here, shape-programmable, architectured hydrogels are introduced, which respond to ultrasonic-cavitation-based mechanical forces (CMF) by directed macroscopic movements. The concept is the implementation and sequential coupling of multiple functions (swellability in water, sensitivity to ultrasound, shape programmability, and shape-memory) in a semi-interpenetrating polymer network (s-IPN). The semi-IPN-based hydrogels are designed to function through rhodium coordination (Rh-s-IPNH). These coordination bonds act as temporary crosslinks. The porous hydrogels with coordination bonds (degree of swelling from 300 +/- 10 to 680 +/- 60) exhibit tensile strength sigma(max) up to 250 +/- 60 kPa. Shape fixity ratios up to 90% and shape recovery ratios up to 94% are reached. Potential applications are switches or mechanosensors. KW - cavitation-based mechanical force KW - rhodium-phosphine coordination bonds KW - semi-IPN hydrogels KW - shape-memory effect Y1 - 2020 U6 - https://doi.org/10.1002/marc.201900658 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 7 PB - Wiley-VCH CY - Weinheim ER -