TY - JOUR A1 - Lai, Feili A1 - Feng, Jianrui A1 - Hei, Tobias A1 - Wang, Gui-Chang A1 - Adler, Peter A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors JF - Energy Storage Materials N2 - Strong metal oxide-support interaction is crucial to activate high energy storage modes of carbon-supported hybrid electrodes in ionic liquid-based supercapacitors. Although it is known that conductive supports can influence the electrochemical properties of metal oxides, insights into how metal oxide-support interactions can be exploited to optimize joint energy storage properties are lacking. We report the junction between alpha-Fe2O3 nanosplotches and phosphorus-doped ordered mesoporous carbon (CMK-3-P) with strong covalent anchoring of the metal oxide. The oxide-carbon interaction in CMK-3-P-Fe2O3 is strengthening the junction and charge transfer between Fe2O3 and CMK-3-P. It enhances energy storage by intensifying the interaction between ionic liquid ions and the surface of the electrode. Density functional theory simulations reveal that the strong metal oxide-support interaction increases the adsorption energy of ionic liquid to -4.77 eV as compared to -3.85 eV for a CMK-3Fe(2)O(3) hybrid with weaker binding. In spite of the lower specific surface area and apparently similar energy storage mode, the CMK-3-P-Fe2O3 exhibits superior electrical double-layer capacitor performance with a specific capacitance of 179 F g(-1) at 2 mV s(-1) (0-3.5 V) in comparison to Fe2O3-free CMK-3 and CMK-3-P reference materials. This principle for design of hybrid electrodes can be applicable for future rational design of stable metal oxide-support electrodes for advanced energy storage. KW - Supercapacitor KW - Nanohybrid KW - Iron oxide KW - Ionic liquid KW - Ordering transitions KW - Main text Y1 - 2019 U6 - https://doi.org/10.1016/j.ensm.2019.04.035 SN - 2405-8297 VL - 20 SP - 188 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Khare, Varsha A1 - Ruby, Christian A1 - Sonkaria, Sanjiv T1 - A green and sustainable nanotechnology role of ionic liquids JF - International journal of precision engineering and manufacturing N2 - In the present study, the effects of ionic liquids (ILs) on the stability of nanoparticles in several IL compositions were investigated. In this context, we examined the primary role of ILs in the synthesis of metal/metal oxide nanoparticles and their dispersions extensively. However, the focus of the discussion in this communication centers mainly on the effect of EMIM Ethyl Sulfate on growth and stability of nanoparticles. The dispersion properties of ILs based on their ability to aid the synthesis of uniformly dispersed nanoparticles have been further explored to produce nanoparticles of an effective catalyst useful in water purification, soil remediation and battery applications. Two independent protocols were developed for the synthesis of nanoparticles, namely (a) one pot process via chemical reduction (b) dispersion of the inorganic material in ILs. The protocols are simple, sustainable and environmentally friendly because the processes are conducted in ILs as harmless non-toxic green solvent materials. The catalysts were analyzed by x-ray diffraction, electron microscopy, UV visible spectroscopy and dynamic light scattering as the main methodologies. KW - Nanotechnology KW - Green synthesis KW - Ionic liquid KW - Green rust KW - Gold nanoparticles Y1 - 2012 U6 - https://doi.org/10.1007/s12541-012-0160-x SN - 2234-7593 VL - 13 IS - 7 SP - 1207 EP - 1213 PB - Korean Society of Precision Engineering CY - Seoul ER -