TY - JOUR A1 - Banerjee, Shiladitya A1 - Saalfrank, Peter T1 - Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids: a study based on time-dependent correlation functions JF - Physical chemistry, chemical physics : a journal of European Chemical Societies Y1 - 2014 U6 - https://doi.org/10.1039/c3cp53535e SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 1 SP - 144 EP - 158 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Banerjee, Shiladitya A1 - Stueker, Tony A1 - Saalfrank, Peter T1 - Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp(2)/sp(3) hybrid species with CQC double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp02615f SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 29 SP - 19656 EP - 19669 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Banerjee, Shiladitya A1 - Stüker, Tony A1 - Saalfrank, Peter T1 - Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics. Y1 - 2015 U6 - https://doi.org/10.1039/C5CP02615F SN - 1463-9084 SN - 1463-9076 VL - 17 IS - 29 SP - 19656 EP - 19669 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Xiong, Tao A1 - Włodarczyk, Radosław Stanisław A1 - Gallandi, Lukas A1 - Körzdörfer, Thomas A1 - Saalfrank, Peter T1 - Vibrationally resolved photoelectron spectra of lower diamondoids BT - a time-dependent approach JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - Vibrationally resolved lowest-energy bands of the photoelectron spectra (PES) of adamantane, diamantane, and urotropine were simulated by a time-dependent correlation function approach within the harmonic approximation. Geometries and normal modes for neutral and cationic molecules were obtained from B3LYP hybrid density functional theory (DFT). It is shown that the simulated spectra reproduce the experimentally observed vibrational finestructure (or its absence) quite well. Origins of the finestructure are discussed and related to recurrences of autocorrelation functions and dominant vibrations. Remaining quantitative and qualitative errors of the DFT-derived PES spectra refer to (i) an overall redshift by ∼0.5 eV and (ii) the absence of satellites in the high-energy region of the spectra. The former error is shown to be due to the neglect of many-body corrections to ordinary Kohn-Sham methods, while the latter has been argued to be due to electron-nuclear couplings beyond the Born-Oppenheimer approximation [Gali et al., Nat. Commun. 7, 11327 (2016)]. Y1 - 2018 U6 - https://doi.org/10.1063/1.5012131 SN - 0021-9606 SN - 1089-7690 VL - 148 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Ugwuja, Chidinma G. A1 - Adelowo, Olawale O. A1 - Ogunlaja, Aemere A1 - Omorogie, Martins O. A1 - Olukanni, Olumide D. A1 - Ikhimiukor, Odion O. A1 - Iermak, Ievgeniia A1 - Kolawole, Gabriel A. A1 - Günter, Christina A1 - Taubert, Andreas A1 - Bodede, Olusola A1 - Moodley, Roshila A1 - Inada, Natalia M. A1 - Camargo, Andrea S.S. de A1 - Unuabonah, Emmanuel Iyayi T1 - Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites JF - ACS applied materials & interfaces N2 - This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Arhammar, C.; Jamstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, therrnogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 x 10(7) cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries. KW - disinfection KW - nanocomposite material KW - multidrug-resistant Escherichia coli KW - water KW - reactive oxygen species Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b01212 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 28 SP - 25483 EP - 25494 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Szatmári, István A1 - Lázár, László A1 - Koch, Andreas A1 - Heydenreich, Matthias A1 - Fulop, Ferenc T1 - Visualization and quantification of anisotropic effects on the 1H NMR spectra of 1,3-oxazino[4,3- alpha]isoquinolines - indirect estimates of steric compression N2 - The anisotropic effects of the phenyl, alpha- and beta-naphthyl moieties in four series of 1,3-oxazino[4,3- a]isoquinolines on the H-1 chemical shifts of the isoquinoline protons were calculated by employing the Nucleus Independent Chemical Shift (NICS) concept and Visualized as anisotropic cones by a through-space NMR shielding grid. The signs and extents of these spatial effects on the H-1 chemical shifts of the isoquinoline protons were compared with the experimental H-1 NMR spectra. The differences between the experimental delta (H-1)/ppm values and the calculated anisotropic effects of the aromatic moieties are discussed in terms of the steric compression that occurs in the Compounds studied. Y1 - 2009 U6 - https://doi.org/10.1016/j.tet.2009.07.038 SN - 0040-4020 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas A1 - Seidl, Peter R. T1 - Visualization and quantification of the anisotropic effect of C=C double bonds on 1H NMR spectra of highly congested hydrocarbons-indirect estimates of steric strain N2 - The anisotropic effect of the olefinic C=C double bond has been calculated by employing the NICS (nucleus independent chemical shift) concept and visualized as an anisotropic cone by a through space NMR shielding grid. Sign and size of this spatial effect on 1H chemical shifts of protons in norbornene, exo- and endo-2-methylnorbornenes, and in three highly congested tetracyclic norbornene analogs have been compared with the experimental 1H NMR spectra as far as published. 1H NMR spectra have also been calculated at the HF/6-31G* level of theory to get a full, comparable set of proton chemical shifts. Differences between ;(1H)/ppm and the calculated anisotropic effect of the C=C double bond are discussed in terms of the steric compression that occurs in the compounds studied. Y1 - 2008 UR - http://pubs.acs.org/doi/full/10.1021/jp801063t U6 - https://doi.org/10.1021/Jp801063t ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Visualization of homoaromaticity in cations, neutral molecules and anions by spatial magnetic properties (through space NMR shieldings) - an 1H/13C NMR chemical shift study N2 - Prototypes for homoaromaticity in cations, neutral molecules, and anions are theoretically studied at the MP2 level of theory. For the global minimum structures on the potential energy surface both 1H/13C chemical shifts and spatial magnetic properties as through space NMR shieldings (TSNMRS) were calculated by the GIAO perturbation method. The TSNMRS are visualized as iso-chemical-shielding surfaces (ICSS) of different sign and size. Coincident experimental and computed 1H/13C chemical shifts afforded the possibility to decide from the TSNMRSs at hand on both the existence and the size of homoaromaticity in the molecules studied. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/00404020 U6 - https://doi.org/10.1016/j.tet.2009.04.063 SN - 0040-4020 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Klod, Sabrina A1 - Koch, Andreas T1 - Visualization of through space NMR shieldings of aromatic and anti-aromatic molecules and a simple means to compare and estimate aromaticity N2 - Through space NMR shieldings of aromatic (benzene, mono-substituted and annelated benzenes, ferrocene, [14]- and [18]-annulenes, phenylenes and tetra- to heptahelicene) and anti-aromatic molecules (cyclobutadiene and pentalene) were assessed by ab initio molecular-orbital calculations. Employing the nucleus-independent chemical shifts (NICS) concept, these through space NMR shieldings were visualized as iso-chemical-shielding surfaces (ICSSs) and can be applied quantitatively to determine the stereochemistry of proximal nuclei. In addition, the distances in Å at ICSS values of ±0.1 ppm in-plane and perpendicular-to-center of the aromatic ring system were employed as a simple means to compare and estimate qualitatively the aromaticity of the systems at hand. Y1 - 2007 UR - http://www.sciencedirect.com/science/journal/01661280 U6 - https://doi.org/10.1016/j.theochem.2007.02.049 SN - 0166-1280 ER - TY - JOUR A1 - Sun, Fu A1 - Dong, Kang A1 - Osenberg, Markus A1 - Hilger, Andre A1 - Risse, Sebastian A1 - Lu, Yan A1 - Kamm, Paul H. A1 - Klaus, Manuela A1 - Markoetter, Henning A1 - Garcia-Moreno, Francisco A1 - Arlt, Tobias A1 - Manke, Ingo T1 - Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Dynamic and direct visualization of interfacial evolution is helpful in gaining fundamental knowledge of all-solid-state-lithium battery working/degradation mechanisms and clarifying future research directions for constructing next-generation batteries. Herein, in situ and in operando synchrotron X-ray tomography and energy dispersive diffraction were simultaneously employed to record the morphological and compositional evolution of the interface of InLi-anode|sulfide-solid-electrolyte during battery cycling. Compelling morphological evidence of interfacial degradation during all-solid-state-lithium battery operation has been directly visualized by tomographic measurement. The accompanying energy dispersive diffraction results agree well with the observed morphological deterioration and the recorded electrochemical performance. It is concluded from the current investigation that a fundamental understanding of the phenomena occurring at the solid-solid electrode|electrolyte interface during all-solid-state-lithium battery cycling is critical for future progress in cell performance improvement and may determine its final commercial viability. Y1 - 2018 U6 - https://doi.org/10.1039/c8ta08821g SN - 2050-7488 SN - 2050-7496 VL - 6 IS - 45 SP - 22489 EP - 22496 PB - Royal Society of Chemistry CY - Cambridge ER -