TY - JOUR A1 - Bornhorst, Julia A1 - Kipp, Anna P. A1 - Haase, Hajo A1 - Meyer, Soeren A1 - Schwerdtle, Tanja T1 - The crux of inept biomarkers for risks and benefits of trace elements JF - Trends in Analytical Chemistry N2 - Nowadays, the role of trace elements (TE) is of growing interest because dyshomeostasis of selenium (Se), manganese (Mn), zinc (Zn), and copper (Cu) is supposed to be a risk factor for several diseases. Thereby, research focuses on identifying new biomarkers for the TE status to allow for a more reliable description of the individual TE and health status. This review mirrors a lack of well-defined, sensitive, and selective biomarkers and summarizes technical limitations to measure them. Thus, the capacity to assess the relationship between dietary TE intake, homeostasis, and health is restricted, which would otherwise provide the basis to define adequate intake levels of single TE in both healthy and diseased humans. Besides that, our knowledge is even more limited with respect to the real life situation of combined TE intake and putative interactions between single TE. KW - Trace elements KW - Copper KW - Zinc KW - Manganese KW - Selenium KW - Biomarker KW - Inductively coupled plasma mass spectrometry KW - Hyphenated techniques KW - Isotope ratios Y1 - 2018 U6 - https://doi.org/10.1016/j.trac.2017.11.007 SN - 0165-9936 SN - 1879-3142 VL - 104 SP - 183 EP - 190 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Awad, Duha Jawad A1 - Koch, Andreas A1 - Mickler, Wulfhard A1 - Schilde, Uwe A1 - Strauch, Peter T1 - EPR spectroscopy of 4, 4 '-Bis(tert-butyl)-2, 2 '-bipyridine-1, 2-dithiolatocuprates(II) in host lattices with different coordination geometries JF - Zeitschrift für anorganische und allgemeine Chemie N2 - A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4'-bis(tert-butyl)-2, 2'-bipyridine (tBu2bpy) and S2 =1, 2-dithiooxalate, (dto), 1, 2-dithiosquarate, (dtsq), maleonitrile-1, 2-dithiolate, or 1, 2-dicyanoethene-1, 2-dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi-occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X-ray structure analysis to prove the coordination geometry. The complex crystallizes in a square-planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) angstrom, b = 18.266(2) angstrom, c = 12.6566(12) angstrom, beta = 112.095(7)degrees. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements. KW - 1 KW - 2-Dithiosquarate KW - 1 KW - 2-Dithiooxalate KW - 1 KW - 2-Dicyanoethene-1 KW - 2-dithiolate KW - 4 KW - 4'-Bis(tert-butyl)-2 KW - 2'-bipyridine KW - X-ray structure KW - EPR KW - Copper KW - Nickel KW - Zinc Y1 - 2012 U6 - https://doi.org/10.1002/zaac.201100517 SN - 0044-2313 VL - 638 IS - 6 SP - 965 EP - 975 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ast, Sandra A1 - Rutledge, Peter J. A1 - Todd, Matthew H. T1 - Reversing the triazole topology in a cyclam-triazole-dye ligand gives a 10-fold brighter signal response to Zn2+ in aqueous solution JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - The fluorescence response of a set of cyclam-triazole-dye ligands is controlled by the appended dye, but simple reversal of the triazole topology affords a novel probe for Zn2+ with a longer fluorescence lifetime and higher fluorescence quantum yield upon Zn2+ binding ( = 2.0 ns, Phi(f) = 0.76). KW - Sensors KW - Zinc KW - Click chemistry KW - Fluorescence KW - Electrochemistry Y1 - 2012 U6 - https://doi.org/10.1002/ejic.201201072 SN - 1434-1948 IS - 34 SP - 5611 EP - 5615 PB - Wiley-VCH CY - Weinheim ER -