TY - JOUR A1 - Fechner, Mabya A1 - Koetz, Joachim T1 - Potentiometric behavior of Polyampholytes based on N,N'-diallyl-N,N'-dimethylammonium chloride and maleamic acid derivatives JF - Macromolecular chemistry and physics N2 - Strongly alternating copolymers (PalH, PalPh, PalPhBisCarb) composed of N,N'-diallyl-N,N'-dimethyl-ammonium chloride (DADMAC) and maleamic acid derivatives (MAD) are synthesized by a water-based free radical copolymerization using 4,4-azobis(4-cyanovaleric acid) (V501) as the initiator. The structure of the copolymers is verified by 1H-NMR, elemental analysis, and thermogravimetric measurements, and the physicochemical properties are investigated by viscometric and potentiometric techniques. Potentiometric titration curves show that the acidity of the carboxylic groups strongly depends on the degree of dissociation and the ionic strength. Since all copolymers behave as polycations at low degree of dissociation, a transition from an extended chain to a coil conformation can be identified by reaching the isoelectric point (IEP). KW - acidity constants KW - radical polymerization KW - polyampholytes KW - viscosity KW - conformational transitions Y1 - 2011 U6 - https://doi.org/10.1002/macp.201100532 SN - 1022-1352 VL - 212 IS - 24 SP - 2691 EP - 2699 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Schulze, Nicole A1 - Koetz, Joachim T1 - Kinetically controlled growth of gold nanotriangles in a vesicular template phase by adding a strongly alternating polyampholyte JF - Journal of dispersion science and technology N2 - This paper is focused on the temperature-dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholine and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb. UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in the presence of the polyampholyte at 45°C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45°C. Corresponding zeta potential measurements indicate that a temperature-dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets. KW - Kinetically controlled nanocrystal growth KW - nanotriangles KW - polyampholytes Y1 - 2016 U6 - https://doi.org/10.1080/01932691.2016.1220318 SN - 0193-2691 SN - 1532-2351 VL - 38 IS - 8 SP - 1073 EP - 1078 PB - Taylor & Francis CY - Philadelphia ER -