TY - THES A1 - John, Daniela T1 - Herstellung anisotroper Kolloide mittels templatgesteuerter Assemblierung und Kontaktdruckverfahren T1 - Generation of anisotropic colloids via templated-assisted assembly and contact printing N2 - Diese Arbeit befasste sich mit neuen Konzepten zur Darstellung anisotroper Partikelsysteme durch Anordnung von funktionalisierten Partikeln unter Zuhilfenahme etablierter Methoden wie der templatgestützten Assemblierung von Partikeln und dem Mikrokontaktdruck. Das erste Teilprojekt beschäftigte sich mit der kontrollierten Herstellung von Faltenstrukturen im Mikro- bis Nanometerbereich. Die Faltenstrukturen entstehen durch die Relaxation eines Systems bestehend aus zwei übereinander liegender Schichten unterschiedlicher Elastizität. In diesem Fall wurden Falten auf einem elastischen PDMS-Substrat durch Generierung einer Oxidschicht auf der Substratoberfläche mittels Plasmabehandlung erzeugt. Die Dicke der Oxidschicht, die über verschiedene Parameter wie Behandlungszeit, Prozessleistung, Partialdruck des plasmaaktiven Gases, Vernetzungsgrad, Deformation sowie Substratdicke einstellbar war, bestimmte Wellenlänge und Amplitude der Falten. Das zweite Teilprojekt hatte die Darstellung komplexer, kolloidaler Strukturen auf Basis supramolekularer Wechselwirkungen zum Ziel. Dazu sollte vor allem die templatgestützte Assemblierung von Partikeln sowohl an fest-flüssig als auch flüssig-flüssig Grenzflächen genutzt werden. Für Erstere sollten die in Teilprojekt 1 hergestellten Faltenstrukturen als Templat, für Letztere Pickering-Emulsionen zur Anwendung kommen. Im ersten Fall wurden verschiedene, modifizierte Silicapartikel und Magnetitnanopartikel, deren Größe und Oberflächenfunktionalität (Cyclodextrin-, Azobenzol- und Arylazopyrazolgruppen) variierte, in Faltenstrukturen angeordnet. Die Anordnung hing dabei nicht nur vom gewählten Verfahren, sondern auch von Faktoren wie der Partikelkonzentration, der Oberflächenladung oder dem Größenverhältnis der Partikel zur Faltengeometrie ab. Die Kombination von Cyclodextrin (CD)- und Arylazopyrazol-modifizierten Partikeln ermöglichte, auf Basis einer Wirt-Gast-Wechselwirkung zwischen den Partikeltypen und einer templatgesteuerten Anordnung, die Bildung komplexer und strukturierter Formen in der Größenordnung mehrerer Mikrometer. Dieses System kann einerseits als Grundlage für die Herstellung verschiedener Janus-Partikel herangezogen werden, andererseits stellt die gerichtete Vernetzung zweier Partikelsysteme zu größeren Aggregaten den Grundstein für neuartige, funktionale Materialien dar. Neben der Anordnung an fest-flüssig Grenzflächen konnte außerdem nachgewiesen werden, dass Azobenzol-funktionalisierte Silicapartikel in der Lage sind, Pickering-Emulsionen über mehrere Monate zu stabilisieren. Die Stabilität und Größe der Emulsionsphase kann über Parameter, wie das Volumenverhältnis und die Konzentration, gesteuert werden. CD-funktionalisierte Silicapartikel besaßen dagegen keine Grenzflächenaktivität, während es CD-basierten Polymeren wiederum möglich war, durch die Ausbildung von Einschlusskomplexen mit den hydrophoben Molekülen der Ölphase stabile Emulsionen zu bilden. Dagegen zeigte die Kombination zwei verschiedener Partikelsysteme keinen oder einen destabilisierenden Effekt bezüglich der Ausbildung von Emulsionen. Im letzten Teilprojekt wurde die Herstellung multivalenter Silicapartikel mittels Mikrokontaktdruck untersucht. Die Faltenstrukturen wurden dabei als Stempel verwendet, wodurch es möglich war, die Patch-Geometrie über die Wellenlänge der Faltenstrukturen zu steuern. Als Tinte diente das positiv geladene Polyelektrolyt Polyethylenimin (PEI), welches über elektrostatische Wechselwirkungen auf unmodifizierten Silicapartikeln haftet. Im Gegensatz zum Drucken mit flachen Stempeln fiel dabei zunächst auf, dass sich die Tinte bei den Faltenstrukturen nicht gleichmäßig über die gesamte Substratfläche verteilt, sondern hauptsächlich in den Faltentälern vorlag. Dadurch handelte es sich bei dem Druckprozess letztlich nicht mehr um ein klassisches Mikrokontaktdruckverfahren, sondern um ein Tiefdruckverfahren. Über das Tiefdruckverfahren war es dann aber möglich, sowohl eine als auch beide Partikelhemisphären gleichzeitig und mit verschiedenen Funktionalitäten zu modifizieren und somit multivalente Silicapartikel zu generieren. In Abhängigkeit der Wellenlänge der Falten konnten auf einer Partikelhemisphäre zwei bis acht Patches abgebildet werden. Für die Patch-Geometrie, sprich Größe und Form der Patches, spielten zudem die Konzentration der Tinte auf dem Stempel, das Lösungsmittel zum Ablösen der Partikel nach dem Drucken sowie die Stempelhärte eine wichtige Rolle. Da die Stempelhärte aufgrund der variierenden Dicke der Oxidschicht bei verschiedenen Wellenlängen nicht kontant ist, wurden für den Druckprozess meist Abgüsse der Faltensubstrate verwendet. Auf diese Weise war auch die Vergleichbarkeit bei variierender Wellenlänge gewährleistet. Neben dem erfolgreichen Nachweis der Modifikation mittels Tiefdruckverfahren konnte auch gezeigt werden, dass über die Komplexierung mit PEI negativ geladene Nanopartikel auf die Partikeloberfläche aufgebracht werden können. N2 - This work dealt with new concepts of formation of anisotropic particle systems by using well-known methods such as template-assisted self-assembly of particles and microcontact printing. The first part paid attention to the controlled preparation of wrinkles in a micro or nanometer range. Wrinkles result from the relaxation of a system consisting of two layers with different elasticity. In this case, wrinkles were generated on top of an elastic PDMS substrate via plasma oxidation to a rigid surface. The thickness of the oxidized layer determined wavelength and amplitude of the wrinkles and could be varied by different parameters: time, power, partial pressure of plasma active gas, level of cross-linking, displacement and thickness of the PDMS substrate. The aim of the second part was the generation of complex, colloidal structures based on supramolecular interactions. For this, the template-assisted self-assembly of particles at solid-liquid and liquid-liquid interfaces should be used. Concerning the assembly at solid-liquid interfaces, we utilized the wrinkle structures generated in part 1 and, concerning the assembly at liquid-liquid interfaces, Pickering emulsions were chosen. In the first case, modified particles (silica and magnetite), that size and functionality (cyclodextrine, azobenzene and arylazopyrazol groups) varied, were assembled in wrinkle structures. The assembly depended not only on the chosen method, concentration, surface charge and size ratio between wrinkles and particles. The combination of cyclodextrine (CD)- and aryazopyralzol-modified particles enabled to build complex and regular structures based on supramolecular interactions between the two particles types and template-assisted self-assembly of these particles. On the one hand, this system generated Janus particles and on the other hand, the controlled agglomeration of two different particle types laid the foundation of new functional materials. Beside the assembly at solid-liquid interfaces, azobenzene-functionalized particles could be used for stabilizing Pickering emulsions. Formed emulsions were stable over a period of several months while parameters such as volume ratio and concentration influenced this stability as well as the volume of the emulsion phase. However, CD-functionalized silica particles possessed no interfacial activity to stabilize emulsions, whereas CD-based polymers could stabilize emulsions by forming inclusion complexes with hydrophobic molecules of the oil phase. On the other hand, the combination of CD-based and azobenzene-functionalized particle systems showed no or a destabilizing effect with regard to the formation of emulsions. In the last part, the generation of multivalent silica particles using a microcontact printing technique were analyzed. Wrinkles were used as stamps which induced the possibility to control the patch geometry by varying their wavelength. The positively charged polyelectrolyte (PEI) served as ink because it can stick to the silica surface by electrostatic interactions. Having a closer look at the printing process, a deviation to printing with flat stamps was found. In contrast to printing with flat stamps, ink solution, in case of wrinkles structures, did not spread over the whole substrate equally but laid mainly in the wrinkle groves. Due to this, the printing process is no longer a classical microcontact printing process but an intaglio printing process. Using the intaglio printing process, it was possible to modify both hemispheres of the particles at the same time and with different functionalities as well as generate multivalent silica particles. Depending on the wrinkle wavelength, two to eight patches per hemisphere could be achieved. The geometry of patches, means their size and arrangement, depended on the concentration of the ink on the stamps, the solvent to removing the particles from the stamps and the hardness of the stamps. Due to a varied thickness of the oxidized layer at different wrinkle wavelengths, the hardness of the stamps is not constant; that is why, casted wrinkles were utilized for the printing process. In this way, we ensure the comparability of printing using different wavelengths. Beside the successful proof of modification using intaglio printing, we could also show that negatively charged nanoparticles could be applied on the particle surface by embedding them into PEI before. KW - Faltenstrukturen KW - Anisotrope Kolloide KW - Kontaktdruck KW - Templatgesteuerte Assemblierung KW - wrinkles KW - patchy particles KW - particle assembly KW - printing Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398270 ER - TY - THES A1 - Saatchi, Mersa T1 - Study on manufacturing of multifunctional bilayer systems N2 - Layered structures are ubiquitous in nature and industrial products, in which individual layers could have different mechanical/thermal properties and functions independently contributing to the performance of the whole layered structure for their relevant application. Tuning each layer affects the performance of the whole layered system. Pores are utilized in various disciplines, where low density, but large surfaces are demanded. Besides, open and interconnected pores would act as a transferring channel for guest chemical molecules. The shape of pores influences compression behavior of the material. Moreover, introducing pores decreases the density and subsequently the mechanical strength. To maintain defined mechanical strength under various stress, porous structure can be reinforced by adding reinforcement agent such as fiber, filler or layered structure to bear the mechanical stress on demanded application. In this context, this thesis aimed to generate new functions in bilayer systems by combining layers having different moduli and/or porosity, and to develop suitable processing techniques to access these structures. Manufacturing processes of layered structures employ often organic solvents mostly causing environmental pollution. In this regard, the studied bilayer structures here were manufactured by processes free of organic solvents. In this thesis, three bilayer systems were studied to answer the individual questions. First, while various methods of introducing pores in melt-phase are reported for one-layer constructs with simple geometry, can such methods be applied to a bilayer structure, giving two porous layers? This was addressed with Bilayer System 1. Two porous layers were obtained from melt-blending of two different polyurethanes (PU) and polyvinyl alcohol (PVA) in a co-continuous phase followed by sequential injection molding and leaching the PVA phase in deionized water. A porosity of 50 ± 5% with a high interconnectivity was obtained, in which the pore sizes in both layers ranged from 1 µm to 100 µm with an average of 22 µm in both layers. The obtained pores were tailored by applying an annealing treatment at relevant high temperatures of 110 °C and 130 °C, which allowed the porosity to be kept constant. The disadvantage of this system is that a maximum of 50% porosity could be reached and removal of leaching material in the weld line section of both layers is not guaranteed. Such a construct serves as a model for bilayer porous structure for determining structure-property relationships with respect to the pore size, porosity and mechanical properties of each layer. This fabrication method is also applicable to complex geometries by designing a relevant mold for injection molding. Secondly, utilizing scCO2 foaming process at elevated temperature and pressure is considered as a green manufacturing process. Employing this method as a post-treatment can alter the history orientation of polymer chains created by previous fabrication methods. Can a bilayer structure be fabricated by a combination of sequential injection molding and scCO2 foaming process, in which a porous layer is supported by a compact layer? Such a construct (Bilayer System 2) was generated by sequential injection molding of a PCL (Tm ≈ 58 °C) layer and a PLLA (Tg ≈ 58 °C) layer. Soaking this structure in the autoclave with scCO2 at T = 45 °C and P = 100 bar led to the selective foaming of PCL with a porosity of 80%, while the PLA layer was kept compact. The scCO2 autoclave led to the formation of a porous core and skin layer of the PCL, however, the degree of crystallinity of PLLA layer increased from 0 to 50% at the defined temperature and pressure. The microcellular structure of PCL as well as the degree of crystallinity of PLLA were controlled by increasing soaking time. Thirdly, wrinkles on surfaces in micro/nano scale alter the properties, which are surface-related. Wrinkles are formed on a surface of a bilayer structure having a compliant substrate and a stiff thin film. However, the reported wrinkles were not reversible. Moreover, dynamic wrinkles in nano and micro scale have numerous examples in nature such as gecko foot hair offering reversible adhesion and an ability of lotus leaves for self-cleaning altering hydrophobicity of the surface. It was envisioned to imitate this biomimetic function on the bilayer structure, where self-assembly on/off patterns would be realized on the surface of this construct. In summary, developing layered constructs having different properties/functions in the individual layer or exhibiting a new function as the consequence of layered structure can give novel insight for designing layered constructs in various disciplines such as packaging and transport industry, aerospace industry and health technology. N2 - Schichtstrukturen sind in der Natur und in Industrieprodukten allgegenwärtig, wobei die einzelnen Schichten unterschiedliche mechanische/thermische Eigenschaften und Funktionen haben können, die unabhängig voneinander zur Leistungsfähigkeit der gesamten Schichtstruktur für die jeweilige Anwendung beitragen. Die individuelle Abstimmung jeder einzelnen Schicht wirkt sich auf die Leistungsfähigkeit des gesamten Schichtsystems aus. Poren werden in verschiedenen Bereichen eingesetzt, in denen eine geringe Dichte, aber eine große Oberfläche erforderlich ist. Außerdem können offene und miteinander verbundene Poren als Übertragungskanal für chemische Gast-Moleküle dienen. Die Form der Poren beeinflusst das Kompressionsverhalten des Materials. In diesem Zusammenhang zielte diese Arbeit darauf ab, neue Funktionen in zweischichtigen Systemen durch die Kombination von Schichten mit unterschiedlichen Modulen und/oder Porosität zu erzeugen und geeignete Verarbeitungstechniken zu entwickeln, um diese Strukturen zu erreichen. Bei der Herstellung von Schichtstrukturen werden häufig organische Lösungsmittel verwendet, die meist eine Umweltbelastung darstellen. Daher wurden die hier untersuchten Doppelschichtstrukturen mit Verfahren hergestellt, die frei von organischen Lösungsmitteln sind. In dieser Arbeit wurden drei Doppelschichtsysteme untersucht, um die einzelnen Fragen zu beantworten. Erstens: Während verschiedene Methoden zur Einführung von Poren in der Schmelzphase für einschichtige Konstruktionen mit einfacher Geometrie bekannt sind, stellt sich die Frage, ob solche Methoden sich auf eine zweischichtige Struktur anwenden lassen und somit zwei unterschiedlich poröse Schichten ergibt? Dies wurde mit dem Zweischichtsystem 1 untersucht. Zwei poröse Schichten wurden durch das Mischen in der Schmelze von zwei verschiedenen Polyurethanen (PU) und Polyvinylalkohol (PVA) in einer co-kontinuierlichen Phase erhalten. Es folgte sequentielles Spritzgießen und das Entfernen der PVA-Phase durch „Leaching“ in entionisiertem Wasser. Es wurde eine Porosität von 50 ± 5 % mit einer hohen Interkonnektivität erzielt, wobei die Porengrößen in beiden Schichten zwischen 1 µm und 100 µm lagen, mit einem Durchschnittswert von 22 µm in beiden Schichten. Diese Herstellungsmethode ist auch auf komplexe Geometrien anwendbar, es muss lediglich eine entsprechende Form für das Spritzgießen entworfen werden. Zweitens: die Verwendung des scCO2-Schäumungsverfahrens bei erhöhter Temperatur und erhöhtem Druck wird als umweltfreundlicher Herstellungsprozess betrachtet. Durch den Einsatz dieser Methode als Nachbehandlung kann die Historie der Ausrichtung der Polymerketten, die durch frühere Herstellungsmethoden entstanden ist, verändert werden. Kann eine zweischichtige Struktur durch eine Kombination aus sequentiellem Spritzgießen und scCO2-Schäumverfahren hergestellt werden, bei der eine poröse Schicht von einer kompakten Schicht getragen wird? Ein solches Konstrukt (Bilayer System 2) wurde durch sequentielles Spritzgießen einer PCL-Schicht (Tm ≈ 58 °C) und einer PLLA-Schicht (Tg ≈ 58 °C) erzeugt. Das Einweichen dieser Struktur in scCO2 im Autoklaven bei T = 45 °C und P = 100 bar führte zum selektiven Aufschäumen von PCL mit einer Porosität von 80%, während die PLA-Schicht unverschäumt blieb. Die Behandlung im scCO2-Autoklav führte zur Bildung einer porösen Kern- und Hautschicht des PCL, während der Kristallinitätsgrad der PLLA-Schicht bei der definierten Temperatur und dem definierten Druck von 0 auf 50 % anstieg. Die mikrozelluläre Struktur von PCL sowie der Kristallinitätsgrad von PLLA wurden durch die Erhöhung der Einweichzeit gesteuert. Drittens verändern Falten auf Oberflächen im Mikro-/Nanomaßstab die Eigenschaften, die mit der Oberfläche zusammenhängen. Falten bilden sich auf der Oberfläche einer zweischichtigen Struktur mit einem nachgiebigen Substrat und einem steifen dünnen Film. Die Falten waren jedoch nicht reversibel. Darüber hinaus gibt es in der Natur zahlreiche Beispiele für dynamische Falten im Nano- und Mikromaßstab, wie z. B. Gecko-Fußhaare, die eine reversible Adhäsion ermöglichen, und die Fähigkeit von Lotusblättern, sich selbst zu reinigen, indem sie die Hydrophobizität der Oberfläche verändern. Diese biomimetische Funktion sollte auf der Doppelschichtstruktur nachgeahmt werden, wobei auf der Oberfläche dieses Konstrukts selbstorganisierende On/Off-Muster realisiert werden sollten. Zusammenfassend kann gesagt werden, dass die Entwicklung geschichteter Konstrukte mit unterschiedlichen Eigenschaften/Funktionen in den einzelnen Schichten oder mit einer neuen Funktion als Folge der geschichteten Struktur neue Erkenntnisse für den Entwurf geschichteter Konstrukte in verschiedenen Disziplinen wie der Verpackungs- und Transportindustrie, der Luft- und Raumfahrtindustrie und der Gesundheitstechnologie liefern kann. T2 - Studie zur Herstellung multifunktionaler Doppelschichtsysteme KW - bilayer system KW - biomaterials KW - wrinkles KW - polymer KW - injection molding KW - Doppelschichtstruktur KW - Biomaterialien KW - poröse Struktur KW - Falten KW - Spritzgießen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-601968 ER -