TY - THES A1 - Holtze, Christian H. W. T1 - Neue Einflüsse und Anwendungen von Mikrowellenstrahlung auf Miniemulsionen und ihre Kompositpolymere T1 - New influences and applications of microwave-radiation on miniemulsions and their composite polymers N2 - Miniemulsionen bestehen aus zwei miteinander nicht mischbaren Flüssigkeiten, von der die eine in Form kleiner Tröpfchen fein in der anderen verteilt (dispergiert) ist. Miniemulsionströpfchen sind mit Durchmessern von ungefähr 0,1 Mikrometer kleiner als herkömmliche Emulsionen und können u. a. als voneinander unabhängige Nanoreaktoren für chemische Reaktionen verwendet werden. Man unterteilt sie in direkte Miniemulsionen, in denen ein Öl in Wasser dispergiert ist, und inverse Miniemulsionen, in denen Wasser in Öl dispergiert wird. In dieser Arbeit wird das besondere chemische und physikalische Verhalten solcher Miniemulsionen unter dem Einfluß von Mikrowellenstrahlung untersucht. Dabei werden sowohl für Öl-in-Wasser als auch für Wasser-in-Öl-Miniemulsionen grundlagenwissenschaftliche Entdeckungen beschrieben und durch neue Modelle erklärt. Der praktische Nutzen dieser bislang unbeschriebenen Effekte wird durch ingenieurwissenschaftliche Anwendungsbeispiele im Bereich der Polymerchemie verdeutlicht. 1. Polymerisation mit "überlebenden Radikalen" (Surviving Radical Polymerization) Für die Herstellung von sog. Polymerlatizes (Kunststoffdispersionen, wie sie u. a. für Farben verwendet werden) aus direkten Styrol-in-Wasser Miniemulsionen werden die Styroltröpfchen als Nanoreaktoren verwendet: Sie werden mit Hilfe von Radikalen durch eine Kettenreaktion zu winzigen Polymerpartikeln umgesetzt, die im Wasser dispergiert sind. Ihre Materialeigenschaften hängen stark von der Kettenlänge der Polymermoleküle ab. In dieser Arbeit konnten durch den Einsatz von Mikrowellenstrahlung erstmals große Mengen an Radikalen erzeugt werden, die jeweils einzeln in Tröpfchen (Nanoreaktoren) auch noch lange Zeit nach dem Verlassen der Mikrowelle überleben und eine Polymerisationskettenreaktion ausführen können. Diese Methode ermöglicht nicht nur die Herstellung von Polymeren in technisch zuvor unerreichbaren Kettenlängen, mit ihr sind auch enorm hohe Umsätze nach sehr kurzen Verweilzeiten in der Mikrowelle möglich – denn die eigentliche Reaktion findet außerhalb statt. Es konnte gezeigt werden, dass durch Einsatz von Zusatzstoffen bei unvermindert hohem Umsatz die Polymerkettenlänge variiert werden kann. Die technischen Vorzüge dieses Verfahrens konnten in einer kontinuierlich betriebenen Pilotanlage nachgewiesen werden. 2. Aufheizverhalten inverser Miniemulsionen in Mikrowellenöfen Das Aufheizverhalen von Wasser-in-Öl Miniemulsionen mit kleinen Durchmessern durch Mikrowellen ist überaus träge, da sich nur das wenige Wasser in den Tröpfchen mit Mikrowellen aufheizen lässt, das Öl jedoch kaum. Solche Systeme verhalten sich gemäß der "Theorie des effektiven Mediums". Werden aber etwas größere Tröpfchen im Mikrometerbereich Mikrowellen ausgesetzt, so konnte eine wesentlich schnellere Aufheizung beobachtet werden, die auf eine Maxwell-Wagner-Grenzflächenpolarisation zurückgeführt werden kann. Die Größenabhängigkeit dieses Effekts wurde mit Hilfe der dielektrischen Spektroskopie quantifiziert und ist bislang in der Literatur nie beschrieben worden. Zur genauen Messung dieses Effekts und zu seiner technischen Nutzung wurde ein neuartiges Membranverfahren für die Herstellung von großen Miniemulsionströpfchen im Mikrometerbereich entwickelt. 3. Herstellung von Kompositpolymeren für Mikrowellenanwendungen Um die untersuchte Maxwell-Wagner-Grenzflächenpolarisation technisch nutzen zu können, wurden als dafür geeignete Materialien Kompositpolymere hergestellt. Das sind Kunststoffe, in denen winzige Wassertropfen oder Keramikpartikel eingeschlossen sind. Dazu wurden neuartige Synthesewege auf der Grundlage der Miniemulsionstechnik entwickelt. Ihr gemeinsames Ziel ist die Einschränkung der üblicherweise bei Polymerisation auftretenden Entmischung: In einem Verfahren wurde durch Gelierung die Beweglichkeit der emulgierten Wassertröpfchen eingeschränkt, in einem anderen wurde durch das Einschließen von Keramikpartikeln in Miniemulsionströpfchen die Entmischung auf deren Größe beschränkt. Anwendungen solcher Kompositpolymere könnten künstliche Muskeln, die Absorption von Radarstrahlung, z. B. für Tarnkappenflugzeuge, oder kratzfeste Lacke sein.Bei diesen Experimenten wurde beobachtet, daß sich u. U. in der Miniemulsion große Tröpfchen bilden. Ihr Ursprung wird mit einer neuen Modellvorstellung erklärt, die die Einflüsse auf die Stabilität von Miniemulsionen beschreibt. N2 - Miniemulsions are composed of two immiscible fluids. One of which is distributed as small droplets (dispersed) in the other one. Having diameters of down to 0.05 micrometers, droplets of miniemulsions are smaller than those of conventional emulsions. Among other applications, they can be employed as independent nano-reactors for chemical reactions. They are subdivided in direct miniemulsions, for which an oil is dispersed in an aqueous phase, and inverse miniemulsions, for which water is dispersed in an oil phase. In this work, the specific chemical and physical behaviour of miniemulsions under the influence of microwave-radiation was investigated. For water-in-oil as well as for oil-in-water miniemulsions fundamental discoveries are described and explained by new models. The practical importance of these new effects is exemplified by applications in the field of polymer-chemistry. 1. Polymerization with "surviving radicals" For the production of so-called polymer-latices (dispersions of plastics, as they are used in paints and coatings) from direct styrene-in-water miniemulsions, the styrene-droplets can be considered as separate nano-reactors. Upon radical polymerization, they may be transformed to polymer particles dispersed in water in a 1:1 conversion. Their material properties strongly depend on the chain-length of the polymer molecules. In this work, using microwave radiation, for the first time great quantities of radicals could be generated that survive within the individual droplets (nano-reactors) even for a long time after leaving the microwave oven, carrying out polymerization. This method is suited for the production of polymers with great chain-lengths that cannot be obtained with other technically relevant methods. Moreover, it yields great conversion after very short residence-times in the microwave-oven: the actual reaction takes place outside of the oven. Employing additives allows the variation of chain-length at the same great net rates of conversion. The technical promises of this method could be demonstrated in a continuously operated pilot plant. 2. Heating behaviour of inverse miniemulsions with microwave-radiation The heating of water-in-oil miniemulsions with small droplets using microwaves is very slow, as only the water absorbs microwave-radiation and not the oil. The system behaves according to the "effective medium theory". If slightly larger droplets with diameters of about a micron are subjected to microwaves, they are being heated much more readily, which can be attributed to a Maxwell-Wagner-effect. The size-dependence of this effect has never been described in the literature. It could be quantified with dielectric spectroscopy. For the controlled production of big miniemulsion droples on the micron-scale and for the technical application of the size-dependence, a continuously operated membrane-emulsification device was developed. 3. Production of composite polymers for microwave-applications Suitable composite polymers were produced in order to technically exploit the size-dependence of the Maxwell-Wagner-effect. They may contain sub-micron sized water droplets or ceramic nanoparticles. For their synthesis, new strategies on the basis of miniemulsion-systems were developped, which avoid the usual phase-separation upon polymerization. In one approach, the mobility of the dispersed water droplets was limited through the gelation of the oil phase, in another approach phase separation of ceramic nanoparticles entrapped within miniemulsion droplets was restricted to the dimensions of the droplets. Applications of such composite polymers could be the development of artificial muscles, the absorption of radar radiation (e.g. for stealth applications) or scratch-resistant coatings. In these experiments the existence of stable big droplets in miniemulsions was discovered. Their origin can be explained by a new model that describes the influences on miniemulsion stability. KW - Emulsion KW - Miniemulsion KW - radikalische Polymerisation KW - Mikrowelle KW - Rohrreaktor KW - Membran KW - überlebende Radikale KW - Maxwell-Wagner KW - Grenzflächenpolarierung KW - kolloidale Stabilität KW - Kompositpolymer KW - radical KW - miniemulsion KW - polymerization KW - Maxwell-Wagner KW - composite Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-2492 ER - TY - THES A1 - Kluge, Steven T1 - Integration anorganischer Füllstoffe in Polysulfonmembranen und Auswirkungen auf die Gastransporteigenschaften T1 - Integration of inorganic fillers in polysulfone membranes and effects on the gas transport properties N2 - In der vorliegenden Arbeit wird die Herstellung und Charakterisierung von Mixed-Matrix-Membranen (MMM) für die Gastrennung thematisiert. Dazu wurden verschiedene Füllstoffe genutzt, um in Verbindung mit dem Membranmaterial Polysulfon MMMs herzustellen. Als Füllstoffe wurden 3 aktive und 2 passive Füllstoffe verwendet. Die aktiven Füllstoffe besaßen Porenöffnungen, die in der Lage sind Gase in Abhängigkeit der Molekülgröße zu trennen. Daraus folgt ein höherer idealer Trennfaktor für bestimmte Gaspaare als in Polysulfon selbst. Aufgrund der durch die Poren gebildeten permanenten Kanäle in den aktiven Füllstoffen ergibt sich ein schnellerer Gastransport (Permeabilität) als in Polysulfon. Es handelte sich bei den aktiven Füllstoffen um den Zeolith SAPO-34 und 2 Chargen eines Zeolitic Imidazolate Framework (ZIF) ZIF-8. Die beiden Chargen ZIF-8 unterschieden sich in ihrer spezifischen Oberfläche, was diesen Einfluss speziell in die Untersuchungen zum Gastransport einbeziehen sollte. Bei den passiven Füllstoffen handelte es sich um ein aminofunktionalisiertes Kieselgel und unporöse (dichte) Glaskügelchen. Das Kieselgel besaß Poren, die zu groß waren, um Gase effektiv zu trennen. Die Glaskügelchen konnten keine Gastrennung ermöglichen, da sie keine Poren besaßen. Aus der Literatur ist bekannt, dass die Einbettung von Füllstoffen oft zu Defekten in MMMs führt. Ein Ziel dieser Arbeit war es daher die Einbettung zu optimieren. Weiterhin sollte der Gastransport in MMMs dieser Arbeit mit dem in einer unbeladenen Polysulfonmembran verglichen werden. Aufgrund des selektiveren Trennverhaltens der aktiven Füllstoffe im Vergleich zum Membranmaterial, sollte mit der Einbettung aktiver Füllstoffe die Trennleistung der MMMs mit steigender Füllstoffbeladung immer weiter verbessert werden. Um die Eigenschaften der MMMs zu untersuchen, wurden diese mittels Rasterelektronenmikroskop (REM), Gaspermeationsmessungen (GP) und Thermogravimetrischer Analyse gekoppelt mit Massenspektrometrie (TGA-MS) charakterisiert. Untersuchungen am REM konnten eine Verbesserung der Einbettung zeigen, wenn ein polymerer Haftvermittler verwendet wurde. Verglichen wurde die optimierte Einbettung mit der Einbettung ohne Haftvermittler und Ergebnissen aus der Literatur, in der die Verwendung verschiedener Silane als Haftvermittler beschrieben wurde. Trotz der verbesserten Einbettung konnte lediglich bei geringen Beladungen an Füllstoff (10 und 20 Ma-% bezogen auf das Membranmaterial) eine geringe Steigerung des idealen Trennfaktors in den MMMs gegenüber der unbeladenen Polysulfonmembranen beobachtet werden. Bei höheren Füllstoffbeladungen (30, 40 und 50 Ma-%) war ein deutlicher Anstieg der Permeabilität bei stark sinkendem idealen Trennfaktor zu beobachten. Mit Hilfe von TGA-MS Messungen konnte darüber hinaus festgestellt werden, dass der verwendete Zeolith SAPO-34 durch Wassermoleküle blockierte Porenöffnungen besaß. Das verhinderte den Gastransport im Füllstoff, wodurch die Trennleistung des Füllstoffes nicht ausgenutzt werden konnte. Die Füllstoffe ZIF-8 (chargenunabhängig) und aminofunktionalisiertes Kieselgel wiesen keine blockierten Poren auf. Dennoch zeigte sich in diesen MMMs keine Verbesserung der Gastrenn- oder Gastransporteigenschaften. MMMs mit dichten Glaskügelchen als Füllstoff zeigten dasselbe Gastrenn- und Gastransportverhalten, wie alle MMMs mit den zuvor genannten Füllstoffen. In dieser Arbeit konnte, trotz optimierter Einbettung anorganischer Füllstoffe, für MMMs keine Verbesserung der Gastrenn- oder Gastransporteigenschaften nachgewiesen werden. Vielmehr wurde ein Einfluss der Füllstoffmenge auf die Gastransporteigenschaften in MMMs festgestellt. Die Änderungen der MMMs gegenüber Polysulfon stammen von den Folgen der Einbettung von Füllstoffen in das Matrixpolymer. Durch die Einbettung werden die Eigenschaften des Matrixpolymers ändern, sodass auch der Gastransport beeinflusst wird. Des Weiteren wurde dokumentiert, dass in Abhängigkeit der Füllstoffbeladung die entstehende Membranstruktur beeinflusst wird. Die Beeinflussung war dabei unabhängig von der Füllstoffart. Es wurde eine Korrelation zwischen Füllstoffmenge und veränderter Membranstruktur gefunden. N2 - The present work deals with the production and characterization of mixed matrix membranes (MMM) for gas separation. Various fillers were used to fabricate MMMs in combination with polysulfone as a membrane material. Three active and two passive fillers were used. Active fillers have pore openings that are able to separate gases depending on the size of the molecule. This results in a higher ideal selectivity for certain gas pairs as Polysulfone can reach. Due to the permanent channels formed by pores in the active fillers, there is also a faster gas transport (permeability) than in the membrane material polysulfone. The active fillers were the zeolite SAPO-34 and two batches of a zeolitic imidazolate framework (ZIF) ZIF-8. The two batches ZIF 8 differed in their specific surface area, which should include this influence especially in the investigations on gas transport. Passive fillers were an amino-functionalized silica and non-porous (dense) glass beads. Silica had pores that are too large to effectively separate gases. The glass beads could not enable gas separation because they did not have pores. It is known from literature that embedding of fillers often leads to defects in MMMs. One of the aims of this work was therefore to optimize the embedding of fillers. Furthermore, the gas transport of MMMs was compared with that in a polysulfone membrane without fillers. Due to the more selective separation behavior of the active fillers compared to the membrane material, the embedding of active fillers should improve the separation performance of the MMMs with increasing filler loading. In order to investigate the properties, MMMs were characterized using a scanning electron microscope (SEM), gas permeation measurements (GP) and thermogravimetric analysis coupled with mass spectrometry (TGA-MS). Investigations with SEM were able to show an improvement of embedding of fillers when a polymeric adhesion promoter was used. The optimized embedding was compared with the embedding without adhesion promoter and results from literature in which the use of various silanes as adhesion promoters was described. Despite the improved embedding, a slight increase in ideal selectivity in the MMMs compared to the polysulfone membranes without fillers could only be observed at low loadings of fillers (10 and 20 Ma-%, based on the membrane material). At higher filler loadings (30, 40 and 50 Ma-%), a clear increase in permeability was observed with a sharp decrease in the ideal selectivity. With the aid of TGA-MS measurements, it was possible to determine that the zeolite SAPO-34 had pore openings blocked by water molecules. This prevented the gas transport in the filler, so that the separating capacity of the filler could not be used. ZIF 8 (batch-independent) and amino-functionalized silica did not show any blocked pores. Nevertheless, there was no improvement in gas separation or gas transport properties in MMMs. MMMs with dense glass beads as filler showed the same gas separation and gas transport behavior as all MMMs with the aforementioned fillers. In this work, despite the optimized embedding of inorganic fillers for MMMs, no improvement in gas separation or gas transport properties could be demonstrated. Rather, an influence of the amount of filler on the gas transport properties in MMMs was found. The changes in MMMs compared to polysulfone stem from the consequences of embedding fillers in the matrix polymer. The embedding changes the properties of the matrix polymer, so that the gas transport is also influenced. The influence was independent of the type of filler. Furthermore, it was documented that depending on the filler load, the resulting membrane structure is influenced. A correlation between the amount of filler and the altered membrane structure was found. KW - Dissertation KW - Polysulfon KW - Membran KW - Gastrennung KW - Mixed-Matrix-Membran KW - dissertation KW - membrane KW - mixed-matrix-membrane KW - polysulfone Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-532700 ER -