TY - THES A1 - Faivre, Damien T1 - Biological and biomimetic formation and organization of magnetic nanoparticles T1 - Biologische und biomimetische Bildung und Anordnung von magnetischen Nanopartikel N2 - Biological materials have ever been used by humans because of their remarkable properties. This is surprising since the materials are formed under physiological conditions and with commonplace constituents. Nature thus not only provides us with inspiration for designing new materials but also teaches us how to use soft molecules to tune interparticle and external forces to structure and assemble simple building blocks into functional entities. Magnetotactic bacteria and their chain of magnetosomes represent a striking example of such an accomplishment where a very simple living organism controls the properties of inorganics via organics at the nanometer-scale to form a single magnetic dipole that orients the cell in the Earth magnetic field lines. My group has developed a biological and a bio-inspired research based on these bacteria. My research, at the interface between chemistry, materials science, physics, and biology focuses on how biological systems synthesize, organize and use minerals. We apply the design principles to sustainably form hierarchical materials with controlled properties that can be used e.g. as magnetically directed nanodevices towards applications in sensing, actuating, and transport. In this thesis, I thus first present how magnetotactic bacteria intracellularly form magnetosomes and assemble them in chains. I developed an assay, where cells can be switched from magnetic to non-magnetic states. This enabled to study the dynamics of magnetosome and magnetosome chain formation. We found that the magnetosomes nucleate within minutes whereas chains assembles within hours. Magnetosome formation necessitates iron uptake as ferrous or ferric ions. The transport of the ions within the cell leads to the formation of a ferritin-like intermediate, which subsequently is transported and transformed within the magnetosome organelle in a ferrihydrite-like precursor. Finally, magnetite crystals nucleate and grow toward their mature dimension. In addition, I show that the magnetosome assembly displays hierarchically ordered nano- and microstructures over several levels, enabling the coordinated alignment and motility of entire populations of cells. The magnetosomes are indeed composed of structurally pure magnetite. The organelles are partly composed of proteins, which role is crucial for the properties of the magnetosomes. As an example, we showed how the protein MmsF is involved in the control of magnetosome size and morphology. We have further shown by 2D X-ray diffraction that the magnetosome particles are aligned along the same direction in the magnetosome chain. We then show how magnetic properties of the nascent magnetosome influence the alignment of the particles, and how the proteins MamJ and MamK coordinate this assembly. We propose a theoretical approach, which suggests that biological forces are more important than physical ones for the chain formation. All these studies thus show how magnetosome formation and organization are under strict biological control, which is associated with unprecedented material properties. Finally, we show that the magnetosome chain enables the cells to find their preferred oxygen conditions if the magnetic field is present. The synthetic part of this work shows how the understanding of the design principles of magnetosome formation enabled me to perform biomimetic synthesis of magnetite particles within the highly desired size range of 25 to 100 nm. Nucleation and growth of such particles are based on aggregation of iron colloids termed primary particles as imaged by cryo-high resolution TEM. I show how additives influence magnetite formation and properties. In particular, MamP, a so-called magnetochrome proteins involved in the magnetosome formation in vivo, enables the in vitro formation of magnetite nanoparticles exclusively from ferrous iron by controlling the redox state of the process. Negatively charged additives, such as MamJ, retard magnetite nucleation in vitro, probably by interacting with the iron ions. Other additives such as e.g. polyarginine can be used to control the colloidal stability of stable-single domain sized nanoparticles. Finally, I show how we can “glue” magnetic nanoparticles to form propellers that can be actuated and swim with the help of external magnetic fields. We propose a simple theory to explain the observed movement. We can use the theoretical framework to design experimental conditions to sort out the propellers depending on their size and effectively confirm this prediction experimentally. Thereby, we could image propellers with size down to 290 nm in their longer dimension, much smaller than what perform so far. N2 - Biologische Materialien wie Knochen, Muscheln und Holz wurden von den Menschen seit den ältesten Zeiten verwendet. Diese biologisch gebildeten Materialien haben bemerkenswerte Eigenschaften. Dies ist besonders überraschend, da sie unter physiologischen Bedingungen und mit alltäglichen Bestandteilen gebildet sind. Die Natur liefert uns also nicht nur mit Inspiration für die Entwicklung neuer Materialien, sondern lehrt uns auch, wie biologische Additiven benutzen werden können, um einfache synthetische Bausteine in funktionale Einheiten zu strukturieren. Magnetotaktischen Bakterien und ihre Kette von Magnetosomen sind ein Beispiel, wo einfache Lebewesen die Eigenschaften von anorganischen Materialien steuern, um sich entlang den magnetischen Feldlinien der Erde zu orientieren. Die von den Bakterien gebildeten Magnetosomen sind von besonderem Interesse, da mit magnetischen Eisenoxid-Nanopartikeln in den letzten zehn Jahren einer Vielzahl von Bio-und nanotechnologischen Anwendungen entwickelt worden sind. In dieser Arbeit stelle ich eine biologische und eine bio-inspirierte Forschung auf der Grundlage der magnetotaktischen Bakterien vor. Diese Forschung verbindet die neuesten Entwicklungen von Nanotechnik in der chemischen Wissenschaft, die neuesten Fortschritte der Molekularbiologie zusammen mit modernen Messverfahren. Mein Forschungsschwerpunkt liegt somit an der Schnittstelle zwischen Chemie, Materialwissenschaften, Physik und Biologie. Ich will verstehen, wie biologische Systeme Materialien synthetisieren und organisieren, um Design-Prinzipien zu extrahieren, damit hierarchischen Materialien mit kontrollierten Eigenschaften nachhaltig gebildet werden. KW - magnetotaktische Bakterien KW - Magnetit Nanopartikel KW - Biomineralisation KW - magnetite KW - nanoparticle KW - biomineralization KW - magnetosome KW - magnetotactic bacteria Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72022 ER - TY - THES A1 - Titirici, Maria-Magdalena T1 - Hydrothermal carbonisation T1 - Hydrothermale Karbonisierung BT - A sustainable alternative to versatile carbon materials BT - Eine nachhaltige Alternative zu Kohle N2 - The world’s appetite for energy is producing growing quantities of CO2, a pollutant that contributes to the warming of the planet and which currently cannot be removed or stored in any significant way. Other natural reserves are also being devoured at alarming rates and current assessments suggest that we will need to identify alternative sources in the near future. With the aid of materials chemistry it should be possible to create a world in which energy use needs not be limited and where usable energy can be produced and stored wherever it is needed, where we can minimize and remediate emissions as new consumer products are created, whilst healing the planet and preventing further disruptive and harmful depletion of valuable mineral assets. In achieving these aims, the creation of new and very importantly greener industries and new sustainable pathways are crucial. In all of the aforementioned applications, new materials based on carbon, ideally produced via inexpensive, low energy consumption methods, using renewable resources as precursors, with flexible morphologies, pore structures and functionalities, are increasingly viewed as ideal candidates to fulfill these goals. The resulting materials should be a feasible solution for the efficient storage of energy and gases. At the end of life, such materials ideally must act to improve soil quality and to act as potential CO2 storage sinks. This is exactly the subject of this habilitation thesis: an alternative technology to produce carbon materials from biomass in water using low carbonisation temperatures and self-generated pressures. This technology is called hydrothermal carbonisation. It has been developed during the past five years by a group of young and talented researchers working under the supervision of Dr. Titirici at the Max-Planck Institute of Colloids and Interfaces and it is now a well-recognised methodology to produce carbon materials with important application in our daily lives. These applications include electrodes for portable electronic devices, filters for water purification, catalysts for the production of important chemicals as well as drug delivery systems and sensors. N2 - Der stets wachsende globale Energiebedarf führt zu immer weiter zunehmenden Emissionen von Kohlenstoffdioxid, einem umweltschädlichen Gas, das als eines der Hauptprobleme im weltweiten Klimawandel darstellt. Bislang ist es jedoch nicht möglich, dieses Kohlenstoffdioxid in sinnvoller Weise zu verwerten oder einzulagern. Zudem existieren weitere Probleme in der globalen Energieversorgung, da viele natürlich vorkommende Rohstoffe sehr schnell ausgebeutet werden, so dass in naher Zukunft dringend alternative Energiequellen gefunden werden müssen, um den aktuellen Problemen zu begegnen. Der Wissenschaftszweig der Materialchemie zielt in diesem Zusammenhang darauf ab, dazu beizutragen, die bestehende Energieinfrastruktur nachhaltig zu verändern. Dabei stehen verschiedene Aspekte im Vordergrund: Energie sollte in allen gewünschten Mengen jederzeit verfügbar und auch speicherbar sein. Zudem sollte ihre Erzeugung ohne umweltschädliche Abfallprodukte ablaufen. Tiefgreifende Eingriffe in die Umwelt, v.a. durch den übermäßigen Abbau von Rohstoffen, sollte nicht mehr erforderlich sein. Auf diese Weise können die Folgen des bisherigen Klimawandels eingedämmt werden und neue Schäden an der Umwelt vermieden werden. Neue, grüne Industrie- und Energieprozesse schützen hier also nachhaltig den Planeten. Bei der Forschung an nachhaltigen Formen der Energieversorgung beschäftigen sich Materialchemiker in mannigfaltiger Weise mit Kohlenstoffmaterialien. Diese sollten idealerweise kostengünstig und ohne hohen Energiebedarf produziert werden können. Am vielversprechendsten sind Materialien, die eine flexibel gestaltbare Morphologie besitzen, d.h. die besondere strukturelle Eigenschaften besitzen, wie z.B. Porosität oder chemisch veränderte und damit funktionale Oberflächen. Idealerweise sollten solche neu entwickelten Materialien nicht nur als Speicher von Energie oder Energieträgern dienen, sondern auch nach ihrer Lebensdauer als funktionales Material zur Verbesserung der Bodenqualität eingesetzt werden können und dort noch weiter als potentielle Senke für Kohlenstoffdioxid dienen können. Die zuvor beschriebenen Themen und Probleme stellen den Gegenstand der vorliegenden Habilitationsschrift dar: die Entwicklung einer alternativen Methode zur Herstellung von Kohlenstoffmaterialien aus Biomasse in Wasser bei geringen Temperaturen. Dabei handelt es sich um die sogenannte hydrothermale Karbonisierung, die in den letzten fünf Jahren von einer Gruppe junger, talentierter Wissenschaftler unter der Anleitung von Frau Dr. Titirici am Max-Planck-Institut für Kolloid- und Grenzflächenforschung erarbeitet und weiterentwickelt wurde zu einer heutzutage anerkannten und verbreiteten Methode. Zudem wurden die über diesen Weg gewonnenen Materialien erfolgreich in zahlreichen, für den Alltag wichtigen Anwendungen eingesetzt, so z.B. als Elektroden in tragbaren elektronischen Geräten, als Filtermaterialien für die Aufreinigung kontaminierten Wassers, als Katalysatoren für wichtige chemische Reaktionen, als Trägermaterial für Arzneimittel und als Sensoren. KW - Hydrothermale Karbonisierung KW - Kohlenstoffe auf Biomasse-Basis KW - hydrothermal carbonization KW - biomass-derived carbons Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-66885 ER - TY - THES A1 - Kröner, Dominik T1 - Analysis and control of light-induced processes in molecules: Electron and nuclear quantum dynamics for aspects of stereoisomerism and spectroscopy T1 - Analyse und Kontrolle lichtinduzierter Prozesse in Molekülen: Elektronen- und Kernquantendynamik für Aspekte der Stereoisomerie und Spektroskopie N2 - The habilitation thesis covers theoretical investigations on light-induced processes in molecules. The study is focussed on changes of the molecular electronic structure and geometry, caused either by photoexcitation in the event of a spectroscopic analysis, or by a selective control with shaped laser pulses. The applied and developed methods are predominantly based on quantum chemistry as well as on electron and nuclear quantum dynamics, and in parts on molecular dynamics. The studied scientific problems deal with stereoisomerism and the question of how to either switch or distinguish chiral molecules using laser pulses, and with the essentials for the simulation of the spectroscopic response of biochromophores, in order to unravel their photophysics. The accomplished findings not only explain experimental results and extend existing approaches, but also contribute significantly to the basic understanding of the investigated light-driven molecular processes. The main achievements can be divided in three parts: First, a quantum theory for an enantio- and diastereoselective or, in general, stereoselective laser pulse control was developed and successfully applied to influence the chirality of molecular switches. The proposed axially chiral molecules possess different numbers of "switchable" stable chiral conformations, with one particular switch featuring even a true achiral "off"-state which allows to enantioselectively "turn on" its chirality. Furthermore, surface mounted chiral molecular switches with several well-defined orientations were treated, where a newly devised highly flexible stochastic pulse optimization technique provides high stereoselectivity and efficiency at the same time, even for coupled chirality-changing degrees of freedom. Despite the model character of these studies, the proposed types of chiral molecular switches and, all the more, the developed basic concepts are generally applicable to design laser pulse controlled catalysts for asymmetric synthesis, or to achieve selective changes in the chirality of liquid crystals or in chiroptical nanodevices, implementable in information processing or as data storage. Second, laser-driven electron wavepacket dynamics based on ab initio calculations, namely time-dependent configuration interaction, was extended by the explicit inclusion of magnetic field-magnetic dipole interactions for the simulation of the qualitative and quantitative distinction of enantiomers in mass spectrometry by means of circularly polarized ultrashort laser pulses. The developed approach not only allows to explain the origin of the experimentally observed influence of the pulse duration on the detected circular dichroism in the ion yield, but also to predict laser pulse parameters for an optimal distinction of enantiomers by ultrashort shaped laser pulses. Moreover, these investigations in combination with the previous ones provide a fundamental understanding of the relevance of electric and magnetic interactions between linearly or non-linearly polarized laser pulses and (pro-)chiral molecules for either control by enantioselective excitation or distinction by enantiospecific excitation. Third, for selected light-sensitive biological systems of central importance, like e.g. antenna complexes of photosynthesis, simulations of processes which take place during and after photoexcitation of their chromophores were performed, in order to explain experimental (spectroscopic) findings as well as to understand the underlying photophysical and photochemical principles. In particular, aspects of normal mode mixing due to geometrical changes upon photoexcitation and their impact on (time-dependent) vibronic and resonance Raman spectra, as well as on intramolecular energy redistribution were addressed. In order to explain unresolved experimental findings, a simulation program for the calculation of vibronic and resonance Raman spectra, accounting for changes in both vibrational frequencies and normal modes, was created based on a time-dependent formalism. In addition, the influence of the biochemical environment on the electronic structure of the chromophores was studied by electrostatic interactions and mechanical embedding using hybrid quantum-classical methods. Environmental effects were found to be of importance, in particular, for the excitonic coupling of chromophores in light-harvesting complex II. Although the simulations for such highly complex systems are still restricted by various approximations, the improved approaches and obtained results have proven to be important contributions for a better understanding of light-induced processes in biosystems which also adds to efforts of their artificial reproduction. N2 - Die Habilitationsschrift behandelt theoretische Untersuchungen von durch Licht ausgelösten Prozessen in Molekülen. Der Schwerpunkt liegt dabei auf Veränderungen in der Elektronenstruktur und der Geometrie der Moleküle, die durch Bestrahlung mit Licht entweder bei einer spektroskopischen Untersuchung oder bei gezielter Kontrolle durch geformte Laserpulse herbeigeführt werden. Um die dabei auftretende Elektronen- und Kerndynamik zu simulieren, wurden vornehmlich quantentheoretische Methoden eingesetzt und weiterentwickelt. Die wissenschaftlichen Fragestellungen beschäftigen sich mit dem gezielten Verändern und dem Erkennen der räumlichen Struktur von Molekülen ohne Drehspiegelachse, der sog. molekularen Chiralität, sowie mit durch Licht eingeleiteten Prozessen in biologisch relevanten Pigmenten auf sehr kurzen Zeitskalen. Die entwickelten Ansätze und gewonnenen Erkenntnisse lassen sich drei Haupterfolge unterteilen: Erstens gelang die Entwicklung einer generellen Kontrolltheorie für das Ein- und Umschalten von molekularer Chiralität mit geformten Laserpulsen. Dabei wird die räumliche Struktur der vorgeschlagenen molekularen Schalter zwischen ihren stabilen sog. stereoisomeren Formen selektiv geändert, was sich auf ihre optischen und chemischen Eigenschaften auswirkt. Für komplexere Bedingungen, wie z.B. auf einer Oberfläche verankerten molekularen Schaltern verschiedener Orientierung, wurde eine neue Pulsoptimierungsmethode basierend auf Wahrscheinlichkeiten und Statistik entwickelt. Solche laserpulskontrollierten chiralen molekularen Schalter hofft man u.a. in der Nanotechnologie zum Einsatz zu bringen, wo sie z.B. als Informationsspeicher dienen könnten. Zweitens konnte geklärt werden, welche die wesentlichen Einflüsse sind, die das Erkennen von sog. Enantiomeren, das sind spiegelbildliche Moleküle von entgegengesetzter Chiralität, nach Ionisierung durch ultrakurze zirkular polarisierte Laserpulse ermöglichen. Diese Form des sog. Zirkulardichroismus in der Ionenausbeute erlaubt die quantitative und qualitative Unterscheidung von Enantiomeren in der Massenspektrometrie. Durch Simulation der Elektronendynamik während der Laseranregung konnte u.a. erstmals gezeigt werden, dass neben der Zirkularpolarisation der Laserpulse vor allem die schwachen magnetischen Wechselwirkungen für die Unterscheidung entscheidend sind. Drittens wurden die Spektren von in der Natur vorkommenden Pigmenten simuliert, welche u.a. an wichtigen biologischen Funktionen, wie dem Sammeln von Sonnenenergie für die Photosynthese, beteiligt sind. Die Lichtanregung führt dabei zu einer Veränderung der Elektronenstruktur und Geometrie der Pigmente, wobei letzteres wichtige Konsequenzen für die Verteilung der Energie auf die spektroskopisch beobachteten Molekülschwingungen mit sich bringen. Auch der wichtige Einfluss der biochemischen Umgebung auf die Elektronenstruktur der Pigmente bzw. den Energietransfer zwischen solchen wurde untersucht. Neben der Klärung experimenteller Ergebnisse ermöglichen die Untersuchungen neue Einblicke in die fundamentalen Prozesse kurz nach der Lichtanregung -- Erkenntnisse, die auch für die technische Nachahmung der biologischen Funktionen von Bedeutung sein können. KW - Elektronendynamik KW - chirale Schalter KW - chirale Erkennung KW - Biochromophore KW - Laserpulskontrolle KW - electron dynamics KW - chiral switches KW - chiral recognition KW - biochromophores KW - laser pulse control Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70477 ER - TY - THES A1 - Börner, Hans Gerhard T1 - Exploiting self-organization and functionality of peptides for polymer science T1 - Peptide im Dienste der Polymerwissenschaften : Kontrolle der Selbstorganisation und der Funktionalität N2 - Controlling interactions in synthetic polymers as precisely as in proteins would have a strong impact on polymer science. Advanced structural and functional control can lead to rational design of, integrated nano- and microstructures. To achieve this, properties of monomer sequence defined oligopeptides were exploited. Through their incorporation as monodisperse segments into synthetic polymers we learned in recent four years how to program the structure formation of polymers, to adjust and exploit interactions in such polymers, to control inorganic-organic interfaces in fiber composites and induce structure in Biomacromolecules like DNA for biomedical applications. N2 - Die Kontrolle von Wechselwirkungen in synthetischen Polymersystemen mit vergleichbarer Präzision wie in Polypeptiden und Proteinen hätte einen dramatischen Einfluss auf die Möglichkeiten in den Polymer- und Materialwissenschaften. Um dies zu erreichen, werden im Rahmen dieser Arbeit Eigenschaften von Oligopeptiden mit definierter Monomersequenz ausgenutzt. Die Integration dieser monodispersen Biosegmente in synthetische Polymere erlaubt z. B. den Aufbau von Peptid-block-Polymer Copolymeren. In solchen sogenannten Peptid-Polymer-Konjugaten sind die Funktionalitäten, die Sekundärwechselwirkungen und die biologische Aktivität des Peptidsegments präzise programmierbar. In den vergangen vier Jahren konnte demonstriert werden, wie in Biokonjugatsystemen die Mikrostrukturbildung gesteuert werden kann, wie definierte Wechselwirkungen in diesen Systemen programmiert und ausgenutzt werden können und wie Grenzflächen zwischen anorganischen und organischen Komponenten in Faserkompositmaterialien kontrolliert werden können. Desweiteren konnten Peptid-Polymer-Konjugate verwendet werden, um für biomedizinische Anwendungen DNS gezielt zu komprimieren oder Zelladhäsion auf Oberflächen zu steuern. KW - Peptid-Polymer-Konjugate KW - Biokonjugate KW - Selbstorganisation KW - peptide-polymer conjugate KW - bioconjugate KW - self-assembly Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29066 ER - TY - THES A1 - Kumke, Michael Uwe T1 - Huminstoffe und organische Modellliganden und ihre Wechselwirkung mit Metallionen und polyzyklischen aromatischen Kohlenwasserstoffen T1 - Humic substances and organic model ligands – Interactions with metal ions and polycyclic aromatic hydrocarbons N2 - Immobilisierung bzw. Mobilisierung und Transport von Schadstoffen in der Umwelt, besonders in den Kompartimenten Boden und Wasser, sind von fundamentaler Bedeutung für unser (Über)Leben auf der Erde. Einer der Hauptreaktionspartner für organische und anorganische Schadstoffe (Xenobiotika) in der Umwelt sind Huminstoffe (HS). HS sind Abbauprodukte pflanzlichen und tierischen Gewebes, die durch eine Kombination von chemischen und biologischen Ab- und Umbauprozessen entstehen. Bedingt durch ihre Genese stellen HS außerordentlich heterogene Stoffsysteme dar, die eine Palette von verschiedenartigen Wechselwirkungen mit Schadstoffen zeigen. Die Untersuchung der fundamentalen Wechselwirkungsmechanismen stellt ebenso wie deren quantitative Beschreibung höchste Anforderungen an die Untersuchungsmethoden. Zur qualitativen und quantitativen Charakterisierung der Wechselwirkungen zwischen HS und Xenobiotika werden demnach analytische Methoden benötigt, die bei der Untersuchung von extrem heterogenen Systemen aussagekräftige Daten zu liefern vermögen. Besonders spektroskopische Verfahren, wie z.B. lumineszenz-basierte Verfahren, besitzen neben der hervorragenden Selektivität und Sensitivität, auch eine Multidimensionalität (bei der Lumineszenz sind es die Beobachtungsgrößen Intensität IF, Anregungswellenlänge lex, Emissionswellenlänge lem und Fluoreszenzabklingzeit tF), die es gestattet, auch heterogene Systeme wie HS direkt zu untersuchen. Zur Charakterisierung können sowohl die intrinsischen Fluoreszenzeigenschaften der HS als auch die von speziell eingeführten Lumineszenzsonden verwendet werden. In beiden Fällen werden die zu Grunde liegenden fundamentalen Konzepte der Wechselwirkungen von HS mit Xenobiotika untersucht und charakterisiert. Für die intrinsische Fluoreszenz der HS konnte gezeigt werden, dass neben molekularen Strukturen besonders die Verknüpfung der Fluorophore im Gesamt-HS-Molekül von Bedeutung ist. Konformative Freiheit und die Nachbarschaft zu als Energieakzeptor fungierenden HS-eigenen Gruppen sind wichtige Komponenten für die Charakteristik der HS-Fluoreszenz. Die Löschung der intrinsischen Fluoreszenz durch Metallkomplexierung ist demnach auch das Resultat der veränderten konformativen Freiheit der HS durch die gebundenen Metallionen. Es zeigte sich, dass abhängig vom Metallion sowohl Löschung als auch Verstärkung der intrinsischen HS-Fluoreszenz beobachtet werden kann. Als extrinsische Lumineszenzsonden mit wohl-charakterisierten photophysikalischen Eigenschaften wurden polyzyklische aromatische Kohlenwasserstoffe und Lanthanoid-Ionen eingesetzt. Durch Untersuchungen bei sehr niedrigen Temperaturen (10 K) konnte erstmals die Mikroumgebung von an HS gebundenen hydrophoben Xenobiotika untersucht werden. Im Vergleich mit Raumtemperaturexperimenten konnte gezeigt werden, dass hydrophobe Xenobiotika an HS-gebunden in einer Mikroumgebung, die in ihrer Polarität analog zu kurzkettigen Alkoholen ist, vorliegen. Für den Fall der Metallkomplexierung wurden Energietransferprozesse zwischen HS und Lanthanoidionen bzw. zwischen verschiedenen, gebundenen Lanthanoidionen untersucht. Basierend auf diesen Messungen können Aussagen über die beteiligten elektronischen Zustände der HS einerseits und Entfernungen von Metallbindungsstellen in HS selbst angeben werden. Es ist dabei zu beachten, dass die Experimente in Lösung bei realen Konzentrationen durchgeführt wurden. Aus Messung der Energietransferraten können direkte Aussagen über Konformationsänderungen bzw. Aggregationsprozesse von HS abgeleitet werden. N2 - Transport and fate of xenobiotics in the environment, especially in water and soil, are of utmost importance for life on earth. A major reaction partner for xenobiotics in the environment are humic substances (HS). HS are degradation products of plant and animal tissue, which are formed in a combination of subsequent chemical and/or biochemical processes. Because of the complex history of their origin HS are extremely heterogeneous mixtures of different compounds. Consequently, they posses a great variety of interaction capabilities with various xenobiotics. The investigations of the fundamental interaction mechanisms between HS and xenobiotics make high demands on the analytical techniques used. Especially spectroscopic techniques are promising for the investigation of interaction mechanisms in complex systems. Luminescence spectroscopy has the great advantage of outstanding sensitivity and of multidimensionality, which in principle allows the investigation of HS under environmental relevant conditions. For the characterisation of interaction processes of HS with xenobiotics the intrinsic fluorescence of HS as well as the luminescence of extrinsic probes can be used. The intrinsic HS fluorescence is determined by the molecular structure as well as the connection of the basic fluorophores. Conformational freedom as well as the presence of energy accepting groups in the neighbourhood of the fluorophores are highly important for the overall intrinsic HS fluorescence. The presence of metal ions can either quench or enhance the intrinsic HS fluorescence, which depends on the metal ion as well as on the origin of the HS investigated. While in most cases Al3+ ions enhance the intrinsic HS fluorescence, Ln3+ ions induce a fluorescence quenching. Polycyclic aromatic hydrocarbons were used as extrinsic fluorescence probes in order to characterize the interaction of HS and hydrophobic organic xenobiotics. In investigations at ultra-low temperatures (10 K) it could be shown that pyrene is bound in a HS microenvironment with an polarity which resembles that of small alcohols (e.g., butanol). In case of metal complexation, the lanthanide ions Eu3+ and Tb3+ were used as luminescence probes. Due to the outstanding luminescence properties of those ions, information about metal binding sites in HS were obtained. Based on the measurements of intramolecular and intermolecular energy transfer processes average distances of metal binding sites were deduced. KW - Fluoreszenz KW - Huminstoffe KW - Lanthanoide KW - Huminstoffe KW - Fluoreszenz KW - Lanthanoide KW - Resonanzenergietransfer KW - Lumineszenzsonden KW - Fluorescence KW - humic substances KW - resonance energy transfer KW - luminescence probes KW - lanthanides Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6066 ER - TY - THES A1 - Schlaad, Helmut T1 - Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions N2 - In dieser Arbeit wurde die Rolle selektiver, nicht-kovalenter Wechselwirkungen bei der Selbstorganisation von Diblockcopolymeren untersucht. Durch Einführung elektrostatischer, dipolarer Wechselwirkungen oder Wasserstoffbrückenbindungen sollte es gelingen, komplexe Mesostrukturen zu erzeugen und die Ordnung vom Nanometerbereich auf größere Längenskalen auszuweiten. Diese Arbeit ist im Rahmen von Biomimetik zu sehen, da sie Konzepte der synthetischen Polymer- und Kolloidchemie und Grundprinzipien der Strukturbildung in supramolekularen und biologischen Systemen verbindet. Folgende Copolymersysteme wurden untersucht: (i) Blockionomere, (ii) Blockcopolymere mit chelatisierenden Acetoacetoxyeinheiten und (iii) Polypeptid-Blockcopolymere. N2 - In this work, the basic principles of self-organization of diblock copolymers having the in¬herent property of selective or specific non-covalent binding were examined. By the introduction of electrostatic, dipole–dipole, or hydrogen bonding interactions, it was hoped to add complexity to the self-assembled mesostructures and to extend the level of ordering from the nanometer to a larger length scale. This work may be seen in the framework of biomimetics, as it combines features of synthetic polymer and colloid chemistry with basic concepts of structure formation applying in supramolecular and biological systems. The copolymer systems under study were (i) block ionomers, (ii) block copolymers with acetoacetoxy chelating units, and (iii) polypeptide block copolymers. T2 - Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions KW - block copolymer KW - polypeptide KW - controlled polymerization KW - self-assembly KW - specific interactions KW - micelle KW - vesicle KW - solid-state structure KW - colloids KW - Blockcopolymer KW - Polypeptid KW - kontrollierte Polymerisation KW - Selbstorganisation KW - spezifische Wechselwirkungen KW - Mizelle KW - Vesikel KW - Festkörperstruktur KW - Kol Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001824 ER -