TY - JOUR A1 - Roy, Parna A1 - Mukherjee, Arpita A1 - Mondal, Pritha A1 - Bhattacharyya, Biswajit A1 - Narayan, Awadhesh A1 - Pandey, Anshu T1 - Electronic structure and spectroscopy of I-III-VI2 nanocrystals BT - a perspective JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - I-III-VI2 semiconductor nanocrystals have been applied to a host of energy conversion devices with great success. Large scale implementation of device concepts based on these materials has, however, been somewhat stymied by the strong role of defects in determining the optoelectronic characteristics of these materials. Here we present a perspective view of the role of electronic structure and defects on the physical properties, particularly the spectroscopy, of this family of materials. Applications of these materials are further discussed in this context. Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpcc.1c10922 SN - 1932-7447 SN - 1932-7455 VL - 126 IS - 17 SP - 7364 EP - 7373 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Madani, Amiera A1 - Anghileri, Lucia A1 - Heydenreich, Matthias A1 - Möller, Heiko Michael A1 - Pieber, Bartholomäus T1 - Benzylic fluorination induced by a charge-transfer complex with a solvent-dependent selectivity switch JF - Organic letters / publ. by the American Chemical Society N2 - We present a divergent strategy for the fluorination of phenylacetic acid derivatives that is induced by a charge-transfer complex between Selectfluor and 4-(dimethylamino)pyridine. A comprehensive investigation of the conditions revealed a critical role of the solvent on the reaction outcome. In the presence of water, decarboxylative fluorination through a single-electron oxidation is dominant. Non-aqueous conditions result in the clean formation of alpha-fluoro-alpha-arylcarboxylic acids. KW - Charge transfer KW - Halogenation KW - Oxidation KW - Reaction products KW - Reagents Y1 - 2022 U6 - https://doi.org/10.1021/acs.orglett.2c02050 SN - 1523-7060 SN - 1523-7052 VL - 24 IS - 29 SP - 5376 EP - 5380 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wojcik, Michal A1 - Brinkmann, Pia A1 - Zdunek, Rafał A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Merk, Sven A1 - Cieslik, Katarzyna A1 - Mory, David A1 - Antonczak, Arkadiusz T1 - Classification of copper minerals by handheld laser-induced breakdown spectroscopy and nonnegative tensor factorisation JF - Sensors N2 - Laser-induced breakdown spectroscopy (LIBS) analysers are becoming increasingly common for material classification purposes. However, to achieve good classification accuracy, mostly noncompact units are used based on their stability and reproducibility. In addition, computational algorithms that require significant hardware resources are commonly applied. For performing measurement campaigns in hard-to-access environments, such as mining sites, there is a need for compact, portable, or even handheld devices capable of reaching high measurement accuracy. The optics and hardware of small (i.e., handheld) devices are limited by space and power consumption and require a compromise of the achievable spectral quality. As long as the size of such a device is a major constraint, the software is the primary field for improvement. In this study, we propose a novel combination of handheld LIBS with non-negative tensor factorisation to investigate its classification capabilities of copper minerals. The proposed approach is based on the extraction of source spectra for each mineral (with the use of tensor methods) and their labelling based on the percentage contribution within the dataset. These latent spectra are then used in a regression model for validation purposes. The application of such an approach leads to an increase in the classification score by approximately 5% compared to that obtained using commonly used classifiers such as support vector machines, linear discriminant analysis, and the k-nearest neighbours algorithm. KW - LIBS KW - NTF KW - HALS KW - classification KW - copper minerals Y1 - 2020 U6 - https://doi.org/10.3390/s20185152 SN - 1424-8220 VL - 20 IS - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kaya, Kerem A1 - Debsharma, Tapas A1 - Schlaad, Helmut A1 - Yagci, Yusuf T1 - Cellulose-based polyacetals by direct and sensitized photocationic ring-opening polymerization of levoglucosenyl methyl ether JF - Polymer Chemistry N2 - This study aims to explore the photoinitiated cationic ring-opening polymerization of levoglucosenyl methyl ether (LGME), a chemical obtained from the most abundant biomass - cellulose. Direct and sensitized photopolymerizations of LGME using photoinitiators acting at the near UV or visible range in conjunction with diphenyliodonium hexafluoroantimonate (DPI) yielded unsaturated polyacetals with varying molar masses and distributions. Y1 - 2020 U6 - https://doi.org/10.1039/d0py01307b SN - 1759-9954 SN - 1759-9962 VL - 11 IS - 43 SP - 6884 EP - 6889 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yan, Runyu A1 - Oschatz, Martin A1 - Wu, Feixiang T1 - Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons JF - Carbon N2 - Despite intensive research on porous carbon materials as hosts for sulfur in lithium-sulfur battery cathodes, it remains a problem to restrain the soluble lithium polysulfide intermediates for a long-term cycling stability without the use of metallic or metal-containing species. Here, we report the synthesis of nitrogen-doped carbon materials with hierarchical pore architecture and a core-shell-type particle design including an ordered mesoporous carbon core and a polar microporous carbon shell. The initial discharge capacity with a sulfur loading up to 72 wt% reaches over 900 mA h g(sulf)(ur)(-1) at a rate of C/2. Cycling performance measured at C/2 indicates similar to 90% capacity retention over 250 cycles. In comparison to other carbon hosts, this architecture not only provides sufficient space for a high sulfur loading induced by the high-pore-volume particle core, but also enables a dual effect of physical and chemical confinement of the polysulfides to stabilize the cycle life by adsorbing the soluble intermediates in the polar microporous shell. This work elucidates a design principle for carbonaceous hosts that is capable to provide simultaneous physical-chemical confinement. This is necessary to overcome the shuttle effect towards stable lithium-sulfur battery cathodes, in the absence of additional membranes or inactive metal-based anchoring materials. KW - lithium-sulfur battery KW - sulfur KW - porous carbon KW - cathode KW - polysulfides Y1 - 2020 U6 - https://doi.org/10.1016/j.carbon.2020.01.046 SN - 0008-6223 SN - 1873-3891 VL - 161 SP - 162 EP - 168 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Balk, Maria A1 - Peng, Xingzhou A1 - Lendlein, Andreas T1 - Shape-programmable architectured hydrogels sensitive to ultrasound JF - Macromolecular rapid communications N2 - On-demand motion of highly swollen polymer systems can be triggered by changes in pH, ion concentrations, or by heat. Here, shape-programmable, architectured hydrogels are introduced, which respond to ultrasonic-cavitation-based mechanical forces (CMF) by directed macroscopic movements. The concept is the implementation and sequential coupling of multiple functions (swellability in water, sensitivity to ultrasound, shape programmability, and shape-memory) in a semi-interpenetrating polymer network (s-IPN). The semi-IPN-based hydrogels are designed to function through rhodium coordination (Rh-s-IPNH). These coordination bonds act as temporary crosslinks. The porous hydrogels with coordination bonds (degree of swelling from 300 +/- 10 to 680 +/- 60) exhibit tensile strength sigma(max) up to 250 +/- 60 kPa. Shape fixity ratios up to 90% and shape recovery ratios up to 94% are reached. Potential applications are switches or mechanosensors. KW - cavitation-based mechanical force KW - rhodium-phosphine coordination bonds KW - semi-IPN hydrogels KW - shape-memory effect Y1 - 2020 U6 - https://doi.org/10.1002/marc.201900658 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 7 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Akarsu, Pinar A1 - Grobe, Richard A1 - Nowaczyk, Julius A1 - Hartlieb, Matthias A1 - Reinicke, Stefan A1 - Böker, Alexander A1 - Sperling, Marcel A1 - Reifarth, Martin T1 - Solid-phase microcontact printing for precise patterning of rough surfaces BT - using polymer-tethered elastomeric stamps for the transfer of reactive silanes JF - ACS applied polymer materials N2 - We present a microcontact printing (mu CP) routine suitable to introduce defined (sub-) microscale patterns on surface substrates exhibiting a high capillary activity and receptive to a silane-based chemistry. This is achieved by transferring functional trivalent alkoxysilanes, such as (3-aminopropyl)-triethoxysilane (APTES) as a low-molecular weight ink via reversible covalent attachment to polymer brushes grafted from elastomeric polydimethylsiloxane (PDMS) stamps. The brushes consist of poly{N-[tris(hydroxymethyl)-methyl]acrylamide} (PTrisAAm) synthesized by reversible addition-fragmentation chain-transfer (RAFT)-polymerization and used for immobilization of the alkoxysilane-based ink by substituting the alkoxy moieties with polymer-bound hydroxyl groups. Upon physical contact of the silane-carrying polymers with surfaces, the conjugated silane transfers to the substrate, thus completely suppressing ink-flow and, in turn, maximizing printing accuracy even for otherwise not addressable substrate topographies. We provide a concisely conducted investigation on polymer brush formation using atomic force microscopy (AFM) and ellipsometry as well as ink immobilization utilizing two-dimensional proton nuclear Overhauser enhancement spectroscopy (H-1-H-1-NOESY-NMR). We analyze the mu CP process by printing onto Si-wafers and show how even distinctively rough surfaces can be addressed, which otherwise represent particularly challenging substrates. KW - microcontact printing KW - capillary-active substrates KW - silane chemistry KW - PDMS surface grafting KW - surface patterning KW - shuttled RAFT-polymerization Y1 - 2021 U6 - https://doi.org/10.1021/acsapm.1c00024 SN - 2637-6105 VL - 3 IS - 5 SP - 2420 EP - 2431 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mazarei, Elham A1 - Barker, John R. T1 - CH2 + O-2 BT - reaction mechanism, biradical and zwitterionic character, and formation of CH2OO, the simplest Criegee intermediate JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - The singlet and triplet potential surfaces for the title reaction were investigated using the CBS-QB3 level of theory. The wave functions for some species exhibited multireference character and required the CASPT2/6-31+G(d,p) and CASPT2/aug-cc-pVTZ levels of theory to obtain accurate relative energies. A Natural Bond Orbital Analysis showed that triplet (CH2OO)-C-3 (the simplest Criegee intermediate) and (CH2O2)-C-3 (dioxirane) have mostly polar biradical character, while singlet (CH2OO)-C-1 has some zwitterionic character and a planar structure. Canonical variational transition state theory (CVTST) and master equation simulations were used to analyze the reaction system. CVTST predicts that the rate constant for reaction of (CH2)-C-1 + O-3(2) is more than ten times as fast as the reaction of (CH2)-C-3 ((XB1)-B-3) + O-3(2) and the ratio remains almost independent of temperature from 900 K to 3000 K. The master equation simulations predict that at low pressures the (CH2O)-C-1 + O-3 product set is dominant at all temperatures and the primary yield of OH radicals is negligible below 600 K, due to competition with other primary reactions in this complex system. Y1 - 2021 U6 - https://doi.org/10.1039/d1cp04372b SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 2 SP - 914 EP - 927 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Riemer, Nastja A1 - Riemer, Martin A1 - Krüger, Mandy A1 - Clarkson, Guy J. A1 - Shipman, Michael A1 - Schmidt, Bernd T1 - Synthesis of arylidene-beta-lactams via exo-selective Matsuda-Heck arylation of methylene-beta-lactams JF - The journal of organic chemistry : JOC N2 - exo-Methylene-beta-lactams were synthesized in two steps from commercially available 3-bromo-2-(bromomethyl)-propionic acid and reacted with arene diazonium salts in a Heck-type arylation in the presence of catalytic amounts of Pd(OAc)(2) under ligand-free conditions. The products, arylidene-beta-lactams, were obtained in high yields as single isomers. The beta-hydride elimination step of the Pd-catalyzed coupling reaction proceeds with high exo-regioselectivity and E-stereoselectivity. With aryl iodides, triflates, or bromides, the coupling products were isolated only in low yields, due to extensive decomposition of the starting material at elevated temperatures. This underlines that arene diazonium salts can be superior arylating reagents in Heck-type reactions and yield coupling products in synthetically useful yields and selectivities when conventional conditions fail. Y1 - 2021 U6 - https://doi.org/10.1021/acs.joc.1c00638 SN - 0022-3263 SN - 1520-6904 VL - 86 IS - 13 SP - 8786 EP - 8796 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Balischewski, Christian A1 - Choi, Hyung-Seok A1 - Behrens, Karsten A1 - Beqiraj, Alkit A1 - Körzdörfer, Thomas A1 - Gessner, Andre A1 - Wedel, Armin A1 - Taubert, Andreas T1 - Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives JF - ChemistryOpen N2 - Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples. KW - Ionic liquids KW - ionic liquid crystals KW - ionic liquid precursors KW - metal KW - sulfides KW - catalysis KW - electrochemistry KW - energy materials KW - LED KW - solar KW - cells Y1 - 2021 U6 - https://doi.org/10.1002/open.202000357 SN - 2191-1363 VL - 10 IS - 2 SP - 272 EP - 295 PB - Wiley-VCH CY - Weinheim ER -