TY - THES A1 - Nothofer, Heinz-Georg T1 - Flüssigkristalline Polyfluorene N2 - Eine Reihe 9,9-dialkylsubstituierter Polyfluorene mit linearen und verzweigtkettigen Alkylsubstituenten und einem Molekulargewicht von bis zu 200000 g/mol wurde synthetisiert und charakterisiert. Darüber hinaus wurden einige dieser Polymere mit einer geeigneten 'Lochtransport'-Funktionalität (Triphenylamin-Derivate) ausgestattet, um die Ladungstransporteigenschaften und das Molekulargewicht dieser Substanzen zu kontrollieren. Die thermische Orientierung dieser neuen Polymere auf geriebenen Polyimid-Schichten führte zu hoch anisotropen Filmen mit großen dichroischen Verhältnissen (Absorption parallel und senkrecht zur Reibungsrichtung gemessen). Ferner wurde eine Gruppe chiraler Polyfluorene synthetisiert und hinsichtlich ihrer chiroptischen Eigenschaften untersucht. Der mit diesen chiralen, konjugierten Polymeren erreichte Grad der Anisotropie in Absorption (CD), circular polarisierter Photolumineszenz (CPPL) und Elektrolumineszenz (CPEL) überstieg die bis dahin bekannten Werte um einen Faktor von 200. N2 - A series of 9,9-dialkyl-poly(fluorene-2,7-diyl)s containing linear and branched alkyl substituents with a molecular weight of up to 200000 g/mol has been synthesized and characterized. Moreover, some of the polymers were end capped with a suitable hole transport functionality, such as a triphenylamine derivative, to improve their charge transport properties and to control the molecular weight. The thermal alignment of these novel polymers on a rubbed polyimide layer led to highly anisotropic film formation with large dichroic ratios (absorption parallel and perpendicular to the rubbing direction). Additionally a set of chiral polyfluorenes has been synthesized and investigated with respect to their chiroptical properties. The degrees of anisotropy in absorption (CD), circular polarized photoluminescence (CPPL) and electroluminescence (CPEL) found with these chiral conjugated polymers exceeded the yet known values by a factor of 200. KW - Polyfluoren KW - konjugierte Polymere KW - Elektrolumineszenz KW - OLED KW - Circularpolarisation Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000039 ER - TY - THES A1 - Struszczyk, Marcin Henryk T1 - Herstellung von Chitosan und einige Anwendungen N2 - 1. Die Deacetylierung von crabshell – Chitosan führte gleichzeitig zu einem drastischen Abfall der mittleren viscosimetrischen Molmasse ( Mv), insbesondere wenn die Temperatur und die Konzentration an NaOH erhöht werden. Diese Parameter beeinflussten jedoch nicht den Grad der Deacetylierung (DD). Wichtig ist jedoch die Quelle des Ausgangsmaterials: Chitin aus Pandalus borealis ist ein guter Rohstoff für die Herstellung von Chitosan mit niedrigem DD und gleichzeitig hoher mittlerer Mv, während Krill-Chitin (Euphausia superba) ein gutes Ausgangsmaterial zur Herstellung von Chitosan mit hohem DD und niedrigem Mv ist. Chitosan, das aus Insekten (Calliphora erythrocephala), unter milden Bedingungen (Temperatur: 100°C, NaOH-Konzentration: 40 %, Zeit: 1-2h ) hergestellt wurde, hatte die gleichen Eigenschaften hinsichtlich DD und Mv wie das aus Krill hergestellte Chitosan. Der Bedarf an Zeit, Energie und NaOH ist für die Herstellung von Insekten-Chitosan geringer als für crabshell-Chitosan vergleichbare Resultaten für DD und Mv. 2. Chitosan wurde durch den Schimmelpilz Aspergillus fumigatus zu Chitooligomeren fermentiert. Die Ausbeute beträgt 25%. Die Chitooligomere wurden mit Hilfe von HPLC und MALDI-TOF-Massenspektrmetrie identifiziert. Die Fermentationsmischung fördert die Immunität von Pflanzen gegen Bakterien und Virusinfektion. Die Zunahme der Immunität schwankt jedoch je nach System Pflanze-Pathogen. Die Fermentation von Chitosan durch Aspergillus fumigatus könnte eine schnelle und billige Methode zur Herstellung von Chitooligomeren mit guter Reinheit und Ausbeute sein. Eine partiell aufgereinigte Fermentationsmischung dieser Art könnte in der Landwirtschaft als Pathogeninhibitor genutzt werden. Durch kontrollierte Fermentation, die Chitooligomere in definierter Zusammensetzung (d.h. definierter Verteilung des Depolymerisationsgrades) liefert, könnte man zu Mischungen kommen, die für die jeweilige Anwendung eine optimale Bioaktivität besitzen. 3. Die aus Chitosan-Dispersionen hergestellten MCChB-Filme weisen bessere mechanische Eigenschaften (Bruchfestigkeit, Dehnung) und eine höhere Wasseraufnahmefähigkeit auf als Filme, die nach herkömmlichen Methoden aus sauerer Lösung hergestellt werden. Die Einführung von Proteinen ändert die mechanischen Eigenschaften der MCChB-Filme abhängig von der Art, der Proteine sowie des DD und der Mv des eingesetzte Chitosan. Die Zugabe von Protein beschleunigt den biologischen Abbau der MCChB-Filme. Aus den untersuchten MCChB-Filmen mit Proteinzusatz können leichte, reißfeste und dennoch elastische Materialen hergestellt werden. 4. Mit Hilfe von MCChB-Dispersion kann Papier modifiziert werden. Dadurch werden die mechanischen Eigenschaften verbessert und die Wasseraufnahme wird verringert. Die Zugabe von Proteinen verringert das Wasseraufnahmevermögen noch weiter. Ein geringes Wasseraufnahmevermögen ist der bedeutendste Faktor bei der Papierherstellung. Auch Papier, das mit einem MCChB-Protein-Komplexe modifiziert wurde, zeigt gute mechanische Eigenschaften. 5. Wird Chitosan durch unmittelbare Einführung von MCChB auf Cellulose-Fasern aufgebracht, so erhält man eine netzartige Struktur, während durch Ausfällung aufgebrachtes Chitosan eine dünne Schicht auf den Cellulose-Fasern bildet. Die netzartige Struktur erleichtert die Bioabbaubarkeit, während die Schichtstruktur diese erschwert. 6. Die guten mechanischen Eigenschaften, die geringe Wasseraufnahmefähigkeit und die mit Cellulose vergleichbare Bioabbaubarkeit von Papier, das mit MCChB modifiziert wurde, lassen MCChB für die Veredlung von Papier nützlich erscheinen. N2 - 1. Deacetylation of the crustacean chitosan causes drastically decrease in the Mv with increasing reaction temperature and time as well as the concentration of sodium hydroxide. However, the DD are relatively less affected. Pandalus borealis is a good source for production of chitosan having high Mv and low DD, whereas chitosan of medium to low Mv can ideally be prepared using krill chitin. Insect chitosan is prepared under milder condition as compared with the crustacean chitosan, showed similar Mv and DD. Moreover, the consumption of time, energy and sodium hydroxide is much lower than for crustacean chitosan used. The properties of chitin (type of source, crystallinity, DD, Mv, swelling properties, particle size) affect the deacetylated polymer parameters. 2. Fermentation of chitosan using fungus Aspergillus fumigatus resulted in a composition of oligosaccharides with controlled molecular weight and yield at least 25 wt%. The product of fermentation effectively inhibited the viral and/or bacterial infection of the plant. This method can be an excellent, inexpensive system for preparation of bioactive agent. The preliminary purified fermentation mixture due to its antiviral and antibacterial behaviour is capable to be used as a natural, plant protection agent. The controlled degradation of chitosan connected with the production of various oligosaccharides having specified molecular weight allows obtaining the product with optimum bioactivity for suitable applications. 3. The films formed form microcrystalline chitosan (MCChB) gel-like dispersion demonstrate the better mechanical properties and higher swelling behaviour than typical films prepared using acidic solution of chitosan. The introduction of proteins significantly changes the mechanical strength and swelling behaviour. Addition of proteins causes the increase in their biodecomposition. The blended films containing proteins could be the base for formation of the resistant materials showed excellent elongation at break. 4. The application of MCChB in a paper formation as a modificator of the fibre-water interactions allows producing the paper sheets indicating the high increase in the mechanical properties and significant decrease in swelling properties. The introduction of MCChB with proteins causes a slight decrease in paper mechanical strength, if determined at low relative humidity. However, the mechanical strength measured at high relative humidity differ less than for paper sheet containing only MCChB. 5. Direct introduction of MCChB to a paper pulp forms the "web-like" structure of cellulose fibres and MCChB. The "web-like" structure of MCChB enables the faster biodecomposition of formed paper sheets. The precipitation of MCChB as wells as introduction of MCChB with proteins causes the "coat-like" structure. MCChB creates a thin layers coated the cellulose fibres lowering a biodecomposition rate. 6. The properties of paper sheets modified by MCChB such as: similar to cellulose biodegradation, excellent mechanical properties at rel. high humidity and the decrease in swelling properties as well as various possibilities to introduce MCChB allow to apple microcrystalline chitosan with or without proteins as the modificator of the fibre-water interactions in paper. KW - Chitosan / Präparative Chemie / Verpackungsmaterial / Mikrobielle Abbaubarkeit / Chitosan / Proteine Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000319 ER - TY - THES A1 - Schüler, Corinna T1 - Mikro- und Nanokapseln aus Funktionspolymeren, Biopolymeren und Proteinen N2 - In dieser Arbeit wird die Beschichtung von kolloidalen Templaten mit Hilfe der Layer-by-layer Technik beschrieben. Mit ihr ist es möglich, die Oberfläche der Template mit sehr dünnen und gut definierten Filmen zu versehen. Durch Auflösung der Template werden Kapseln hergestellt, die je nach Zusammensetzung der Beschichtung unterschiedliche Eigenschaften aufweisen. N2 - In this thesis the coating of colloid templates using the layer-by-layer technique is described. The surface of the templates is modified with thin, well defined films. After dissolving the templates, hollow capsules with different properties are obtained. KW - Layer-by-Layer KW - Polyelektrolyte KW - Kolloide KW - Koordinationspolymere KW - enzymatische Katalyse KW - GOD KW - POD KW - Kapseln KW - DNA KW - Biopolymere Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000102 ER - TY - THES A1 - Peytcheva, Anna T1 - Kolloidales Calciumphosphat mit Polymeren Additiven : Struktur und Dynamik N2 - Die Entstehung zeitlich veränderlicher kolloidaler Strukturen in wäßrigen Calciumphosphat-Dispersionen wurde abgebildet und einer Strukturanalyse unterzogen. Diese wurde durchgeführt unter Einsatz verschiedener bildgebenderund Streumethoden, deren Ergebnisse verglichen wurden. Ziel der Arbeit war es, aus biomineralisierenden Systemen bekannte Prozesse zu vereinfachen und im Experiment nachzustellen. Die gefundenen komplexen hierarchischen Strukturendes Calciumphosphates sind stark von Eigenschaften des Polymerzusatzes abhängig. N2 - The formation of colloidal structures in a time-dependent fashion was followed and analysed for calcium phosphate systems in a watery evironment. A detailed structure analysis was achieved by applying avariety of scattering and imaging methods and comparing the obtained information. The aim of this work was to shed light on processes observed in biomineralizing living systems by simplifying andmimiking those systems in the experiment. A complex hierarchical structuring of calciumphosphate strongly influenced by the added polymer was found. KW - Biomineralisation; Bruschit; Statische Lichtstreuung; Röntgenkleinwinkelstreuung Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000297 ER - TY - THES A1 - Kasparova, Pavla T1 - Doppelthydrophile Blockcopolymere als Mineralisationstemplate N2 - Die vorliegende Arbeit beschäftigt sich mit der Synthese und den Eigenschaften von doppelthydrophilen Blockcopolymeren und ihrer Anwendung in einem biomimetischen Mineralisationsprozeß von Calciumcarbonat und Bariumsulfat. Doppelthydrophile Blockcopolymere bestehen aus einem hydrophilen Block, der nicht mit Mineralien wechselwirkt und einem zweiten Polyelektrolyt-Block, der stark mit Mineraloberflächen wechselwirkt. Diese Blockcopolymere wurden durch ringöffnende Polymerisation von N-carboxyanhydriden (NCA′s) und a-methoxy-ω-amino[poly(ethylene glycol)] PEG-NH2 als Initiator hergestellt. Die hergestellten Blockcopolymere wurden als effektive Wachstumsmodifikatoren für die Kristallisation von Calciumcarbonat und Bariumsulfat Mineralien eingesetzt. Die so erhaltenen Mineralpartikel (Kugeln, Hantel, eiförmige Partikel) wurden durch Lichtmikroskopie in Lösung, SEM und TEM charakterisiert. Röntgenweitwinkelstreuung (WAXS) wurde verwendet, um die Modifikation von Calciumcarbonat zu ermitteln und die Größe der Calciumcarbonat- und Bariumsulfat-Nanopartikel zu ermitteln. N2 - This work describes the synthesis and characterization of double hydrophilic block copolymers and their use in a biomimetic mineralization process of Calcium Carbonate and Barium Sulfate. Double hydrophilic block copolymers consist of a hydrophilic block that does not interact with minerals and another hydrophilic polyelectrolyte block that strongly interacts with mineral surfaces. These polymers were synthesised via ring opening polymerisation of N-carboxyanhydride (NCA), and the first hydrophilic block a-methoxy-ω-amino[poly(ethylene glycol)] PEG-NH2 was used as an initiator. The prepared block copolymers were used as effective crystal growth modifiers to control the crystallization of Calcium Carbonate and Barium Sulfate minerals. The resulting mineral particles (spheres, dumbbells, egg-like particles) were characterised by light microscopy in solution, by SEM, and by TEM. X-Ray scattering measurements (WAXS) were used to prove the modification of Calcium Carbonate particles and to calculate the size of Calcium Carbonate and Barium Sulfate nanoparticles. KW - Blockcopolymere ; Polyaminosäuren ; Hydrophile Verbindungen ; Chemische Synthese ; Ringöffnungspolymerisation | Calciumcarbonat ; Biomineralisation KW - Doppelthydrophile Blockcopolymere KW - N-carboxyanhydrid KW - NCA KW - poly(L-Asparaginsäure) KW - poly(L-Glutaminsäure) KW - poly(L-Serin) KW - poly(O-phospho-L-Serin) KW - Ca KW - Double hydrophilic block copolymers KW - N-carboxyanhydride KW - NCA KW - poly(L-aspartic acid) KW - poly(L-glutamic acid) KW - poly(L-serine) KW - poly(O-phospho-L-serine) Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000483 ER -