TY - JOUR A1 - Sultanow, Eldar A1 - Weber, Edzard T1 - Pharmataxigraphie Model of a Hybrid System of RFID Technology and optical Methods JF - Die pharmazeutische Industrie Y1 - 2013 SN - 0031-711X VL - 75 IS - 7 SP - 1197 EP - + PB - Editio-Cantor-Verl. für Medizin und Naturwiss. CY - Aulendorf ER - TY - JOUR A1 - Breitkopf, Hendrik A1 - Schlüter, P. M. A1 - Xu, S. A1 - Schiestl, Florian P. A1 - Cozzolino, S. A1 - Scopece, G. T1 - Pollinator shifts between Ophrys sphegodes populations: might adaptation to different pollinators drive population divergence? JF - Journal of evolutionary biology N2 - Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by-product of the divergence in pollination systems. However, pollinator-mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O.sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O.sphegodes population exclusively attracted A.nigroaenea. Significant differences in scent component proportions were identified in O.sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome-wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O.sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats. KW - adaptation KW - ecotypes KW - floral scent KW - gene flow KW - Ophrys KW - orchids KW - pollinator shift KW - sexual deception KW - speciation Y1 - 2013 U6 - https://doi.org/10.1111/jeb.12216 SN - 1010-061X SN - 1420-9101 VL - 26 IS - 10 SP - 2197 EP - 2208 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wang, Jing A1 - Fritzsch, Claire A1 - Bernarding, Johannes A1 - Krause, Thomas A1 - Mauritz, Karl-Heinz A1 - Brunetti, Maddalena A1 - Dohle, Christian T1 - Cerebral activation evoked by the mirror illusion of the hand in stroke patients compared to normal subjects JF - Neurorehabilitation : an interdisciplinary journal N2 - BACKGROUND: Mirror therapy (MT) was found to improve motor function after stroke, but its neural mechanisms remain unclear, especially in single stroke patients. OBJECTIVES: The following imaging study was designed to compare brain activation patterns evoked by the mirror illusion in single stroke patients with normal subjects. METHODS: Fifteen normal volunteers and five stroke patients with severe arm paresis were recruited. Cerebral activations during movement mirroring by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Single-subject analysis was performed using SPM 8. RESULTS: For normal subjects, ten and thirteen subjects displayed lateralized cerebral activations evoked by the mirror illusion while moving their right and left hand respectively. The magnitude of this effect in the precuneus contralateral to the seen hand was not dependent on movement speed or subjective experience. Negative correlation of activation strength with age was found for the right hand only. The activation pattern in stroke patients is comparable to that of normal subjects and present in four out of five patients. CONCLUSIONS: In summary, the mirror illusion can elicit cerebral activation contralateral to the perceived hand in the majority of single normal subjects, but not in all of them. This is similar even in stroke patients with severe hemiparesis. KW - Movement KW - mirror illusion KW - imaging KW - mirror therapy KW - stroke Y1 - 2013 U6 - https://doi.org/10.3233/NRE-130999 SN - 1053-8135 SN - 1878-6448 VL - 33 IS - 4 SP - 593 EP - 603 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Diversification of Ponto-Caspian aquatic fauna - morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae) JF - Molecular phylogenetics and evolution N2 - The geological history of the Ponto-Caspian region, with alternating cycles of isolation and reconnection among the three main basins (Black and Azov Seas, and the more distant Caspian Sea) as well as between them and the Mediterranean Sea, profoundly affected the diversification of its aquatic fauna, leading to a high degree of endemism. Two alternative hypotheses on the origin of this amazing biodiversity have been proposed, corresponding to phases of allopatric separation of aquatic fauna among sea basins: a Late Miocene origin (10-6 MYA) vs. a more recent Pleistocene ancestry (<2 MYA). Both hypotheses support a vicariant origin of (1) Black + Azov Sea lineages on the one hand, and (2) Caspian Sea lineages on the other. Here, we present a study on the Ponto-Caspian endemic amphipod Pontogammarus maeoticus. We assessed patterns of divergence based on (a) two mitochondrial and one nuclear gene, and (b) a morphometric analysis of 23 morphological traits in 16 populations from South and West Caspian Sea, South Azov Sea and North-West Black Sea. Genetic data indicate a long and independent evolutionary history, dating back from the late Miocene to early Pleistocene (6.6-1.6 MYA), for an unexpected, major split between (i) a Black Sea clade and (ii) a well-supported clade grouping individuals from the Caspian and Azov Seas. Absence of shared haplotypes argues against either recent or human-mediated exchanges between Caspian and Azov Seas. A mismatch distribution analysis supports more stable population demography in the Caspian than in the Black Sea populations. Morphological divergence largely followed patterns of genetic divergence: our analyses grouped samples according to the basin of origin and corroborated the close phylogenetic affinity between Caspian and Azov Sea lineages. Altogether, our results highlight the necessity of careful (group-specific) evaluation of evolutionary trajectories in marine taxa that should certainly not be inferred from the current geographical proximity of sea basins alone. (C) 2013 Elsevier Inc. All rights reserved. KW - Biodiversity hotspot KW - Black Sea KW - Caspian Sea KW - Paratethys KW - Sea of Azov KW - Vicariance Y1 - 2013 U6 - https://doi.org/10.1016/j.ympev.2013.05.021 SN - 1055-7903 SN - 1095-9513 VL - 69 IS - 3 SP - 1063 EP - 1076 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - DeMatthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea Y1 - 2013 UR - 1960 = DOI: 10.1186/1742-9994-10-21 SN - 1742-9994 ER - TY - JOUR A1 - Fiorentino, V. A1 - Manganelli, Giuseppe A1 - Giusti, Folco A1 - Tiedemann, Ralph A1 - Ketmaier, Valerino T1 - A question of time the land snail Murella muralis (Gastropoda: Pulmonata) reveals constraints on past ecological speciation JF - Molecular ecology N2 - The lively debate about speciation currently focuses on the relative importance of factors driving population differentiation. While many studies are increasingly producing results on the importance of selection, little is known about the interaction between drift and selection. Moreover, there is still little knowledge on the spatial-temporal scales at which speciation occurs, that is, arrangement of habitat patches, abruptness of habitat transitions, climate and habitat changes interacting with selective forces. To investigate these questions, we quantified variation on a fine geographical scale analysing morphological (shell) and genetic data sets coupled with environmental data in the land snail Murella muralis, endemic to the Mediterranean island of Sicily. Analysis of a fragment of the mitochondrial DNA cytochrome oxidase I gene (COI) and eight nuclear microsatellite loci showed that genetic variation is highly structured at a very fine spatial scale by local palaeogeographical events and historical population dynamics. Molecular clock estimates, calibrated here specifically for Tyrrhenian land snails, provided a framework of palaeogeographical events responsible for the observed geographical variations and migration routes. Finally, we showed for the first time well-documented lines of evidence of selection in the past, which explains divergence of land snail shell shapes. We suggest that time and palaeogeographical history acted as constraints in the progress along the ecological speciation continuum. Our study shows that testing for correlation among palaeogeography, morphology and genetic data on a fine geographical scale provides information fundamental for a detailed understanding of ecological speciation processes. KW - allopatry KW - cytochrome oxidase I gene KW - ecological speciation KW - land snails KW - microsatellites KW - Murella Y1 - 2013 U6 - https://doi.org/10.1111/mec.12107 SN - 0962-1083 SN - 1365-294X VL - 22 IS - 1 SP - 170 EP - 186 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea JF - Frontiers in zoology N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2013 U6 - https://doi.org/10.1186/1742-9994-10-21 SN - 1742-9994 VL - 10 IS - 4-5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Milinkovitch, Michel C. A1 - Kanitz, Ricardo A1 - Tiedemann, Ralph A1 - Tapia, Washington A1 - Llerena, Fausto A1 - Caccone, Adalgisa A1 - Gibbs, James P. A1 - Powell, Jeffrey R. T1 - Recovery of a nearly extinct Galapagos tortoise despite minimal genetic variation JF - Evolutionary applications N2 - A species of Galapagos tortoise endemic to Espanola Island was reduced to just 12 females and three males that have been bred in captivity since 1971 and have produced over 1700 offspring now repatriated to the island. Our molecular genetic analyses of juveniles repatriated to and surviving on the island indicate that none of the tortoises sampled in 1994 had hatched on the island versus 3% in 2004 and 24% in 2007, which demonstrates substantial and increasing reproduction in situ once again. This recovery occurred despite the parental population having an estimated effective population size <8 due to a combination of unequal reproductive success of the breeders and nonrandom mating in captivity. These results provide guidelines for adapting breeding regimes in the parental captive population and decreasing inbreeding in the repatriated population. Using simple morphological data scored on the sampled animals, we also show that a strongly heterogeneous distribution of tortoise sizes on Espanola Island observed today is due to a large variance in the number of animals included in yearly repatriation events performed in the last 40years. Our study reveals that, at least in the short run, some endangered species can recover dramatically despite a lack of genetic variation and irregular repatriation efforts. KW - captive populations KW - conservation biology KW - conservation genetics Y1 - 2013 U6 - https://doi.org/10.1111/eva.12014 SN - 1752-4571 VL - 6 IS - 2 SP - 377 EP - 383 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hechavarria, Julio C. A1 - Macias, Silvio A1 - Vater, Marianne A1 - Mora, Emanuel C. A1 - Kössl, Manfred T1 - Evolution of neuronal mechanisms for echolocation specializations for target-range computation in bats of the genus Pteronotus JF - The journal of the Acoustical Society of America N2 - Delay tuning was studied in the auditory cortex of Pteronotus quadridens. All the 136 delay-tuned units that were studied responded strongly to heteroharmonic pulse-echo pairs presented at specific delays. In the heteroharmonic pairs, the first sonar call harmonic marks the timing of pulse emission while one of the higher harmonics (second or third) indicates the timing of the echo. Delay-tuned units are organized chronotopically along a rostrocaudal axis according to their characteristic delay. There is no obvious indication of multiple cortical axes specialized in the processing of different harmonic combinations of pulse and echo. Results of this study serve for a straight comparison of cortical delay-tuning between P. quadridens and the well-studied mustached bat, Pteronotus parnellii. These two species stem from the most recent and most basal nodes in the Pteronotus lineage, respectively. P. quadridens and P. parnellii use comparable heteroharmonic target-range computation strategies even though they do not use biosonar calls of a similar design. P. quadridens uses short constant-frequency (CF)/frequency-modulated (FM) echolocation calls, while P. parnellii uses long CF/FM calls. The ability to perform "heteroharmonic" target-range computations might be an ancestral neuronal specialization of the genus Pteronotus that was subjected to positive Darwinian selection in the evolution. Y1 - 2013 U6 - https://doi.org/10.1121/1.4768794 SN - 0001-4966 VL - 133 IS - 1 SP - 570 EP - 578 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Hechavarria, Julio C. A1 - Macias, Silvio A1 - Vater, Marianne A1 - Voss, Cornelia A1 - Mora, Emanuel C. A1 - Kossl, Manfred T1 - Blurry topography for precise target-distance computations in the auditory cortex of echolocating bats JF - Nature Communications N2 - Echolocating bats use the time from biosonar pulse emission to the arrival of echo (defined as echo delay) to calculate the space depth of targets. In the dorsal auditory cortex of several species, neurons that encode increasing echo delays are organized rostrocaudally in a topographic arrangement defined as chronotopy. Precise chronotopy could be important for precise target-distance computations. Here we show that in the cortex of three echolocating bat species (Pteronotus quadridens, Pteronotus parnellii and Carollia perspicillata), chronotopy is not precise but blurry. In all three species, neurons throughout the chronotopic map are driven by short echo delays that indicate the presence of close targets and the robustness of map organization depends on the parameter of the receptive field used to characterize neuronal tuning. The timing of cortical responses (latency and duration) provides a binding code that could be important for assembling acoustic scenes using echo delay information from objects with different space depths. Y1 - 2013 U6 - https://doi.org/10.1038/ncomms3587 SN - 2041-1723 VL - 4 IS - 10 PB - Nature Publ. Group CY - London ER -