TY - JOUR A1 - Bogen, Oliver A1 - Bender, Olaf A1 - Loewe, Jana A1 - Blenau, Wolfgang A1 - Thevis, Beatrice A1 - Schroeder, Wolfgang A1 - Margolis, Richard U. A1 - Levine, Jon D. A1 - Hucho, Ferdinand T1 - Neuronally produced versican V2 renders C-fiber nociceptors IB4-positive JF - Journal of neurochemistry N2 - A subpopulation of nociceptors, the glial cell line-derived neurotrophic factor (GDNF)-dependent, non-peptidergic C-fibers, expresses a cell-surface glycoconjugate that can be selectively labeled with isolectin B4 (IB4), a homotetrameric plant lectin from Griffonia simplicifolia. We show that versican is an IB4-binding molecule in rat dorsal root ganglion neurons. Using reverse transcriptase polymerase chain reaction (RT-PCR), insitu hybridization and immunofluorescence experiments on rat lumbar dorsal root ganglion, we provide the first demonstration that versican is produced by neurons. In addition, by probing Western blots with splice variant-specific antibodies we show that the IB4-binding versican contains only the glycosaminoglycan alpha domain. Our data support V2 as the versican isoform that renders this subpopulation of nociceptors IB4-positive (+). A subset of nociceptors, the GDNF-dependent non-peptidergic C-fibers can be characterized by its reactivity for isolectin B4 (IB4), a plant lectin from Griffonia simplicifolia. We have previously demonstrated that versican V2 binds IB4 in a Ca2+-dependent manner. However, given that versican is thought to be the product of glial cells, it was questionable whether versican V2 can be accountable for the IB4-reactivity of this subset of nociceptors. The results presented here prove - for the first time - a neuronal origin of versican and suggest that versican V2 is the molecule that renders GDNF-dependent non-peptidergic C-fibers IB4-positive. KW - IB4 KW - nociceptors KW - pain KW - sensory neurons KW - V2 KW - versican Y1 - 2015 U6 - https://doi.org/10.1111/jnc.13113 SN - 0022-3042 SN - 1471-4159 VL - 134 IS - 1 SP - 147 EP - 155 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Metz, Johannes A1 - von Oppen, Jonathan A1 - Tielbörger, Katja T1 - Parental environmental effects due to contrasting watering adapt competitive ability, but not drought tolerance, in offspring of a semi-arid annual Brassicaceae JF - The journal of ecology N2 - Parental effects (PE) can be adaptive and improve offspring performance when parents and offspring experience similar environmental conditions. However, it is unknown whether adaptive PE exist also in habitats where such similarity is unlikely due to strong temporal variation. In particular, we do not know whether PE can adapt offspring to fluctuating levels of neighbour competition in such habitats. Here, we tested for adaptive PE in terms of two key environmental factors in a semi-arid annual system, competition and drought. While rainfall was stochastic in the study site, the competitive environment was partly predictable: higher plant densities followed after favourable (rainy) years due to high seed production. We therefore expected PE to adapt the offspring's competitive ability to these (predictable) fluctuations in plant densities, rather than to adapt the offspring's drought tolerance to the (unpredictable) occurrence of intensified drought. Parental plants of Biscutella didyma, an annual Brassicaceae, were raised under favourable watering and under drought conditions. Offspring performance was then tested under a full-factorial combination of two neighbour regimes and six watering levels in the glasshouse. Offspring of parents grown under favourable conditions were stronger competitors. This was associated with a small shift in phenology but not with higher parental seed provisioning. Offspring from parents grown under drought showed no improved drought tolerance. Moreover, no PE were detectable when offspring were grown without neighbours. Our results suggest a novel path of adaptive PE: higher competitive ability was induced in offspring that were more likely to experience high neighbour densities. Together with the lack of adaptive PE towards drought tolerance, this emphasizes that a correlation between parental and offspring environment is crucial for adaptive PE to evolve. Our results also call for the inclusion of competitive effects in future PE studies.Synthesis. This study demonstrates the important role of adaptive PE for plant fitness (regarding competition) but also their limits (regarding drought) in temporally variable environments, based on the predictability of the respective environmental factor. KW - annual plants KW - Biscutella didyma KW - competition KW - dryland ecosystems KW - maternal environmental effects KW - phenology KW - plant population and community dynamics KW - plant-plant interactions KW - transgenerational plasticity KW - water stress Y1 - 2015 U6 - https://doi.org/10.1111/1365-2745.12411 SN - 0022-0477 SN - 1365-2745 VL - 103 IS - 4 SP - 990 EP - 997 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Garapati, Prashanth A1 - Xue, Gang-Ping A1 - Munne-Bosch, Sergi A1 - Balazadeh, Salma T1 - Transcription Factor ATAF1 in Arabidopsis Promotes Senescence by Direct Regulation of Key Chloroplast Maintenance and Senescence Transcriptional Cascades JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Senescence represents a fundamental process of late leaf development. Transcription factors (TFs) play an important role for expression reprogramming during senescence; however, the gene regulatory networks through which they exert their functions, and their physiological integration, are still largely unknown. Here, we identify the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)- and hydrogen peroxide-activated TF Arabidopsis thaliana ACTIVATING FACTOR1 (ATAF1) as a novel upstream regulator of senescence. ATAF1 executes its physiological role by affecting both key chloroplast maintenance and senescence-promoting TFs, namely GOLDEN2-LIKE1 (GLK1) and ORESARA1 (ARABIDOPSIS NAC092), respectively. Notably, while ATAF1 activates ORESARA1, it represses GLK1 expression by directly binding to their promoters, thereby generating a transcriptional output that shifts the physiological balance toward the progression of senescence. We furthermore demonstrate a key role of ATAF1 for ABA- and hydrogen peroxide-induced senescence, in accordance with a direct regulatory effect on ABA homeostasis genes, including NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 involved in ABA biosynthesis and ABC TRANSPORTER G FAMILY MEMBER40, encoding an ABA transport protein. Thus, ATAF1 serves as a core transcriptional activator of senescence by coupling stress-related signaling with photosynthesis- and senescence-related transcriptional cascades. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.00567 SN - 0032-0889 SN - 1532-2548 VL - 168 IS - 3 SP - 1122 EP - + PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Spricigo, Roberto A1 - Leimkühler, Silke A1 - Gorton, Lo A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula T1 - The Electrically Wired Molybdenum Domain of Human Sulfite Oxidase is Bioelectrocatalytically Active JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - We report electron transfer between the catalytic molybdenum cofactor (Moco) domain of human sulfite oxidase (hSO) and electrodes through a poly(vinylpyridine)-bound [osmium(N,N'-methyl-2,2'-biimidazole)(3)](2+/3+) complex as the electron-transfer mediator. The biocatalyst was immobilized in this low-potential redox polymer on a carbon electrode. Upon the addition of sulfite to the immobilized separate Moco domain, the generation of a significant catalytic current demonstrated that the catalytic center is effectively wired and active. The bioelectrocatalytic current of the wired separate catalytic domain reached 25% of the signal of the wired full molybdoheme enzyme hSO, in which the heme b(5) is involved in the electron-transfer pathway. This is the first report on a catalytically active wired molybdenum cofactor domain. The formal potential of this electrochemical mediator is between the potentials of the two cofactors of hSO, and as hSO can occupy several conformations in the polymer matrix, it is imaginable that electron transfer from the catalytic site to the electrode through the osmium center occurs for the hSO molecules in which the Moco domain is sufficiently accessible. The observation of catalytic oxidation currents at low potentials is favorable for applications in bioelectronic devices. KW - Metalloenzymes KW - Enzyme catalysis KW - Immobilization KW - Osmium Y1 - 2015 U6 - https://doi.org/10.1002/ejic.201500034 SN - 1434-1948 SN - 1099-0682 IS - 21 SP - 3526 EP - 3531 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Krämer, Nadine A1 - Ravindran, Ethiraj A1 - Zaqout, Sami A1 - Neubert, Gerda A1 - Schindler, Detlev A1 - Ninnemann, Olaf A1 - Gräf, Ralph A1 - Seiler, Andrea E. M. A1 - Kaindl, Angela M. T1 - Loss of CDK5RAP2 affects neural but not non-neural mESC differentiation into cardiomyocytes JF - Cell cycle N2 - Biallelic mutations in the gene encoding centrosomal CDK5RAP2 lead to autosomal recessive primary microcephaly (MCPH), a disorder characterized by pronounced reduction in volume of otherwise architectonical normal brains and intellectual deficit. The current model for the microcephaly phenotype in MCPH invokes a premature shift from symmetric to asymmetric neural progenitor-cell divisions with a subsequent depletion of the progenitor pool. The isolated neural phenotype, despite the ubiquitous expression of CDK5RAP2, and reports of progressive microcephaly in individual MCPH cases prompted us to investigate neural and non-neural differentiation of Cdk5rap2-depleted and control murine embryonic stem cells (mESC). We demonstrate an accumulating proliferation defect of neurally differentiating Cdk5rap2-depleted mESC and cell death of proliferative and early postmitotic cells. A similar effect does not occur in non-neural differentiation into beating cardiomyocytes, which is in line with the lack of non-central nervous system features in MCPH patients. Our data suggest that MCPH is not only caused by premature differentiation of progenitors, but also by reduced propagation and survival of neural progenitors. KW - CDK5RAP2 KW - MCPH KW - mental retardation KW - neural differentiation KW - primary microcephaly KW - stem cell Y1 - 2015 U6 - https://doi.org/10.1080/15384101.2015.1044169 SN - 1538-4101 SN - 1551-4005 VL - 14 IS - 13 SP - 2044 EP - 2057 PB - Taylor & Francis Group CY - Philadelphia ER - TY - JOUR A1 - Omidbakhshfard, Mohammad Amin A1 - Proost, Sebastian A1 - Fujikura, Ushio A1 - Müller-Röber, Bernd T1 - Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology JF - Molecular plant N2 - Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level. KW - abiotic stress KW - chromatin remodeling KW - flower development KW - growth regulation KW - leaf development KW - miRNA Y1 - 2015 U6 - https://doi.org/10.1016/j.molp.2015.01.013 SN - 1674-2052 SN - 1752-9867 VL - 8 IS - 7 SP - 998 EP - 1010 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Johnson, Kim L. A1 - Ramm, Sascha A1 - Kappel, Christian A1 - Ward, Sally A1 - Leyser, Ottoline A1 - Sakamoto, Tomoaki A1 - Kurata, Tetsuya A1 - Bevan, Michael W. A1 - Lenhard, Michael T1 - The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis JF - PLoS one N2 - Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0131103 SN - 1932-6203 VL - 10 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Dubovskaya, Olga P. A1 - Tang, Kam W. A1 - Gladyshev, Michail I. A1 - Kirillin, Georgiy A1 - Buseva, Zhanna A1 - Kasprzak, Peter A1 - Tolomeev, Aleksandr P. A1 - Grossart, Hans-Peter T1 - Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check JF - PLoS one N2 - Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0131431 SN - 1932-6203 VL - 10 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Vogt, Julia H. M. A1 - Schippers, Jos H. M. T1 - Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants JF - Frontiers in plant science N2 - The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants. KW - PAS domain KW - circadian clock KW - signal transduction KW - environmental stress response KW - growth adaptation Y1 - 2015 U6 - https://doi.org/10.3389/fpls.2015.00513 SN - 1664-462X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Le Duc, Diana A1 - Renaud, Gabriel A1 - Krishnan, Arunkumar A1 - Almen, Markus Sallman A1 - Huynen, Leon A1 - Prohaska, Sonja J. A1 - Ongyerth, Matthias A1 - Bitarello, Barbara D. A1 - Schioth, Helgi B. A1 - Hofreiter, Michael A1 - Stadler, Peter F. A1 - Prüfer, Kay A1 - Lambert, David A1 - Kelso, Janet A1 - Schöneberg, Torsten T1 - Kiwi genome provides insights into evolution of a nocturnal lifestyle JF - Genome biology : biology for the post-genomic era N2 - Background: Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. Results: We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. Conclusions: The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites. Y1 - 2015 U6 - https://doi.org/10.1186/s13059-015-0711-4 SN - 1465-6906 SN - 1474-760X VL - 16 PB - BioMed Central CY - London ER -