TY - JOUR A1 - Renz, Marc A1 - Otten, Cecile A1 - Faurobert, Eva A1 - Rudolph, Franziska A1 - Zhu, Yuan A1 - Boulday, Gwenola A1 - Duchene, Johan A1 - Mickoleit, Michaela A1 - Dietrich, Ann-Christin A1 - Ramspacher, Caroline A1 - Steed, Emily A1 - Manet-Dupe, Sandra A1 - Benz, Alexander A1 - Hassel, David A1 - Vermot, Julien A1 - Huisken, Jan A1 - Tournier-Lasserve, Elisabeth A1 - Felbor, Ute A1 - Sure, Ulrich A1 - Albiges-Rizo, Corinne A1 - Abdelilah-Seyfried, Salim T1 - Regulation of beta 1 Integrin-Klf2-Mediated angiogenesis by CCM proteins JF - Developmental cell N2 - Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor beta 1 integrin and occurs in the absence of blood flow. Downregulation of beta 1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a beta 1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells. Y1 - 2015 U6 - https://doi.org/10.1016/j.devcel.2014.12.016 SN - 1534-5807 SN - 1878-1551 VL - 32 IS - 2 SP - 181 EP - 190 PB - Cell Press CY - Cambridge ER -