TY - GEN A1 - Jones, Eppie R. A1 - González-Fortes, Gloria M. A1 - Connell, Sarah A1 - Siska, Veronika A1 - Eriksson, Anders A1 - Martiniano, Rui A1 - McLaughlin, Russell L. A1 - Llorente, Marcos Gallego A1 - Cassidy, Lara M. A1 - Gamba, Cristina A1 - Meshveliani, Tengiz A1 - Bar-Yosef, Ofer A1 - Müller, Werner A1 - Belfer-Cohen, Anna A1 - Matskevich, Zinovi A1 - Jakeli, Nino A1 - Higham, Thomas F. G. A1 - Currat, Mathias A1 - Lordkipanidze, David A1 - Hofreiter, Michael A1 - Manica, Andrea A1 - Pinhasi, Ron A1 - Bradley, Daniel G. T1 - Upper Palaeolithic genomes reveal deep roots of modern Eurasians T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ∼45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ∼25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ∼3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1334 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439317 SN - 1866-8372 IS - 1334 ER - TY - JOUR A1 - Jones, Eppie R. A1 - González-Fortes, Gloria M. A1 - Connell, Sarah A1 - Siska, Veronika A1 - Eriksson, Anders A1 - Martiniano, Rui A1 - McLaughlin, Russell L. A1 - Llorente, Marcos Gallego A1 - Cassidy, Lara M. A1 - Gamba, Cristina A1 - Meshveliani, Tengiz A1 - Bar-Yosef, Ofer A1 - Mueller, Werner A1 - Belfer-Cohen, Anna A1 - Matskevich, Zinovi A1 - Jakeli, Nino A1 - Higham, Thomas F. G. A1 - Currat, Mathias A1 - Lordkipanidze, David A1 - Hofreiter, Michael A1 - Manica, Andrea A1 - Pinhasi, Ron A1 - Bradley, Daniel G. T1 - Upper Palaeolithic genomes reveal deep roots of modern Eurasians JF - Nature Communications N2 - We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic-Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers similar to 45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers similar to 25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe similar to 3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages. Y1 - 2015 U6 - https://doi.org/10.1038/ncomms9912 SN - 2041-1723 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Ludwig, Arne A1 - Reissmann, Monika A1 - Benecke, Norbert A1 - Bellone, Rebecca A1 - Sandoval-Castellanos, Edson A1 - Cieslak, Michael A1 - González-Fortes, Gloria M. A1 - Morales-Muniz, Arturo A1 - Hofreiter, Michael A1 - Pruvost, Melanie T1 - Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Leopard complex spotting is inherited by the incompletely dominant locus, LP, which also causes congenital stationary night blindness in homozygous horses. We investigated an associated single nucleotide polymorphism in the TRPM1 gene in 96 archaeological bones from 31 localities from Late Pleistocene (approx. 17 000 YBP) to medieval times. The first genetic evidence of LP spotting in Europe dates back to the Pleistocene. We tested for temporal changes in the LP associated allele frequency and estimated coefficients of selection by means of approximate Bayesian computation analyses. Our results show that at least some of the observed frequency changes are congruent with shifts in artificial selection pressure for the leopard complex spotting phenotype. In early domestic horses from Kirklareli-Kanligecit (Turkey) dating to 2700-2200 BC, a remarkably high number of leopard spotted horses (six of 10 individuals) was detected including one adult homozygote. However, LP seems to have largely disappeared during the late Bronze Age, suggesting selection against this phenotype in early domestic horses. During the Iron Age, LP reappeared, probably by reintroduction into the domestic gene pool from wild animals. This picture of alternating selective regimes might explain how genetic diversity was maintained in domestic animals despite selection for specific traits at different times. KW - ancient DNA KW - coat colour KW - domestication KW - Equus KW - palaeogenetics KW - population Y1 - 2015 U6 - https://doi.org/10.1098/rstb.2013.0386 SN - 0962-8436 SN - 1471-2970 VL - 370 IS - 1660 PB - Royal Society CY - London ER - TY - JOUR A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Goodchild, Helen A1 - Speller, Camilla F. A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Thomas, Jessica A. A1 - Ludwig, Arne A1 - Collins, Matthew J. T1 - The future of ancient DNA: Technical advances and conceptual shifts JF - Bioessays : ideas that push the boundaries N2 - Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics. KW - ancient DNA KW - hybridisation capture KW - multi-locus data KW - next generation sequencing (NGS) KW - palaeogenomics KW - population genomics Y1 - 2015 U6 - https://doi.org/10.1002/bies.201400160 SN - 0265-9247 SN - 1521-1878 VL - 37 IS - 3 SP - 284 EP - 293 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Campbell, Kevin L. A1 - Hofreiter, Michael T1 - Resurrecting phenotypes from ancient DNA sequences: promises and perspectives JF - Canadian journal of zoology = Revue canadienne de zoologie N2 - Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller's sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these "living" processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology. KW - paleophysiology KW - ancient DNA KW - extinct species KW - adaptation KW - protein structure Y1 - 2015 U6 - https://doi.org/10.1139/cjz-2014-0337 SN - 0008-4301 SN - 1480-3283 VL - 93 IS - 9 SP - 701 EP - 710 PB - NRC Research Press CY - Ottawa ER - TY - GEN A1 - Xiang, Hai A1 - Gao, Jianqiang A1 - Yu, Baoquan A1 - Hofreiter, Michael A1 - Zhao, Xingbo T1 - Reply to Peters et al.: Further discussions confirm early Holocene chicken domestication in northern China T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1503956112 SN - 0027-8424 VL - 112 IS - 19 SP - E2416 EP - E2416 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Xiang, Hai A1 - Hofreiter, Michael A1 - Zhao, Xingbo T1 - Reply to Peng et al.: Archaeological contexts should not be ignored for early chicken domestication T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1502207112 SN - 0027-8424 VL - 112 IS - 16 SP - E1972 EP - E1973 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Knapp, Michael A1 - Lalueza-Fox, Carles A1 - Hofreiter, Michael T1 - Re-inventing ancient human DNA JF - Investigative Genetics N2 - For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next-or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research. KW - Archaic humans KW - Human evolution KW - Human population genomics KW - Next/second-generation sequencing Y1 - 2015 U6 - https://doi.org/10.1186/s13323-015-0020-4 SN - 2041-2223 VL - 6 PB - BioMed Central CY - London ER - TY - JOUR A1 - Germonpre, Mietje A1 - Sablin, Mikhail V. A1 - Laznickova-Galetova, Martina A1 - Despres, Viviane A1 - Stevens, Rhiannon E. A1 - Stiller, Mathias A1 - Hofreiter, Michael T1 - Palaeolithic dogs and Pleistocene wolves revisited: a reply to Morey (2014) JF - Journal of archaeological science N2 - This is a reply to the comments of Morey (2014) on our identification of Palaeolithic dogs from several European Palaeolithic sites. In his comments Morey (2014) presents some misrepresentations and misunderstandings that we remedy here. In contrast to what Morey (2014) propounds, our results suggest that the domestication of the wolf was a long process that started early in the Upper Palaeolithic and that since that time two sympatric canid morphotypes can be seen in Eurasian sites: Pleistocene wolves and Palaeolithic dogs. Contrary to Morey (2014), we are convinced that the study of this domestication process should be multidisciplinary. (C) 2014 Elsevier Ltd. All rights reserved. KW - Canid morphotype KW - Dog KW - Domestication KW - Palaeolithic KW - Pleistocene KW - Wolf Y1 - 2015 U6 - https://doi.org/10.1016/j.jas.2014.11.035 SN - 0305-4403 SN - 1095-9238 VL - 54 SP - 210 EP - 216 PB - Elsevier CY - London ER - TY - JOUR A1 - Teasdale, Matthew David A1 - van Doorn, N. L. A1 - Fiddyment, S. A1 - Webb, C. C. A1 - Hofreiter, Michael A1 - Collins, Matthew J. A1 - Bradley, Daniel G. T1 - Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. KW - parchment KW - next generation sequencing KW - ancient DNA KW - ZooMS KW - sheep Y1 - 2015 U6 - https://doi.org/10.1098/rstb.2013.0379 SN - 0962-8436 SN - 1471-2970 VL - 370 IS - 1660 PB - Royal Society CY - London ER -