TY - JOUR A1 - Pinyou, Piyanut A1 - Ruff, Adrian A1 - Poeller, Sascha A1 - Alsaoub, Sabine A1 - Leimkühler, Silke A1 - Wollenberger, Ursula A1 - Schuhmann, Wolfgang T1 - Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers JF - Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society N2 - Phenothiazine-modified redox hydrogels were synthesized and used for the wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces. The effects of the pH value and electrode surface modification on the biocatalytic activity of the layers were studied in the presence of vanillin as the substrate. The enzyme electrodes were successfully employed as bioanodes in vanillin/O-2 biofuel cells in combination with a high potential bilirubin oxidase biocathode. Open circuit voltages of around 700 mV could be obtained in a two compartment biofuel cell setup. Moreover, the use of a rather hydrophobic polymer with a high degree of crosslinking sites ensures the formation of stable polymer/enzyme films which were successfully used as bioanode in membrane-less biofuel cells. (C) 2015 Elsevier B.V. All rights reserved. KW - Aldehyde oxidoreductase KW - Enzyme electrode KW - Redox polymer KW - Phenothiazine KW - Biosensor KW - Biofuel cell Y1 - 2016 U6 - https://doi.org/10.1016/j.bioelechem.2015.12.005 SN - 1567-5394 SN - 1878-562X VL - 109 SP - 24 EP - 30 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Bier, Frank Fabian A1 - Ehrentreich-Förster, Eva A1 - Scheller, Frieder W. A1 - Makower, Alexander A1 - Eremenko, A. V. A1 - Wollenberger, Ursula A1 - Bauer, Christian G. A1 - Pfeiffer, Dorothea A1 - Micheel, Burkhard T1 - Ultrasensitive biosensors Y1 - 1996 ER - TY - JOUR A1 - Szeponik, Jan A1 - Möller, B. A1 - Pfeiffer, Dorothea A1 - Lisdat, Fred A1 - Wollenberger, Ursula A1 - Makower, Alexander A1 - Scheller, Frieder W. T1 - Ultrasensitive bienzyme sensor for adrenaline Y1 - 1997 ER - TY - JOUR A1 - Makower, Alexander A1 - Eremenko, A. V. A1 - Streffer, Katrin A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Tyrosinase-glucose dehydrogenase substrate-recycling biosensor : a highly sensitive measurement of phenolic compounds Y1 - 1996 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Bistolas, Nikitas A1 - Liu, Songqin A1 - Jänchen, Michael A1 - Katterle, Martin A1 - Wollenberger, Ursula T1 - Thirty years of haemoglobin electrochemistry N2 - Electrochemical investigations of the blood oxygen carrier protein include both mediated and direct electron transfer. The reaction of haemoglobin (Hb) with typical mediators, e.g., ferricyanide, can be quantified by measuring the produced ferrocyanide which is equivalent to the Hb concentration. Immobilization of the mediator within the electrode body allows reagentless electrochemical measuring of Hb. On the other hand, entrapment of the protein within layers of polyclectrolytes, lipids, nanoparticles of clay or gold leads to a fast heterogeneous electron exchange of the partially denatured Hb. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Yarman, Aysu A1 - Schulz, Christopher A1 - Sygmund, Cristoph A1 - Ludwig, Roland A1 - Gorton, Lo A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Third generation ATP sensor with enzymatic analyte recycling JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - For the first time the direct electron transfer of an enzyme - cellobiose dehydrogenase, CDH - has been coupled with the hexokinase catalyzed competition for glucose in a sensor for ATP. To enhance the signal output for ATP, pyruvate kinase was coimmobilized to recycle ADP by the phosphoenolpyruvate driven reaction. The new sensor overcomes the limit of 1:1 stoichiometry of the sequential or competitive conversion of ATP by effective enzymatic recycling of the analyte. The anodic oxidation of the glucose converting CDH proceeds at electrode potentials below 0 mV vs. Ag vertical bar AgCl thus potentially interfering substances like ascorbic acid or catecholamines do not influence the measuring signal. The combination of direct electron transfer of CDH with the enzymatic recycling results in an interference-free and oxygen-independent measurement of ATP in the lower mu molar concentration range with a lower limit of detection of 63.3 nM (S/N=3). KW - ATP KW - Third generation sensor KW - Enzymatic recycling KW - Cellobiose dehydrogenase KW - Hexokinase KW - Pyruvate kinase Y1 - 2014 U6 - https://doi.org/10.1002/elan.201400231 SN - 1040-0397 SN - 1521-4109 VL - 26 IS - 9 SP - 2043 EP - 2048 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Spricigo, Roberto A1 - Leimkühler, Silke A1 - Gorton, Lo A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula T1 - The Electrically Wired Molybdenum Domain of Human Sulfite Oxidase is Bioelectrocatalytically Active JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - We report electron transfer between the catalytic molybdenum cofactor (Moco) domain of human sulfite oxidase (hSO) and electrodes through a poly(vinylpyridine)-bound [osmium(N,N'-methyl-2,2'-biimidazole)(3)](2+/3+) complex as the electron-transfer mediator. The biocatalyst was immobilized in this low-potential redox polymer on a carbon electrode. Upon the addition of sulfite to the immobilized separate Moco domain, the generation of a significant catalytic current demonstrated that the catalytic center is effectively wired and active. The bioelectrocatalytic current of the wired separate catalytic domain reached 25% of the signal of the wired full molybdoheme enzyme hSO, in which the heme b(5) is involved in the electron-transfer pathway. This is the first report on a catalytically active wired molybdenum cofactor domain. The formal potential of this electrochemical mediator is between the potentials of the two cofactors of hSO, and as hSO can occupy several conformations in the polymer matrix, it is imaginable that electron transfer from the catalytic site to the electrode through the osmium center occurs for the hSO molecules in which the Moco domain is sufficiently accessible. The observation of catalytic oxidation currents at low potentials is favorable for applications in bioelectronic devices. KW - Metalloenzymes KW - Enzyme catalysis KW - Immobilization KW - Osmium Y1 - 2015 U6 - https://doi.org/10.1002/ejic.201500034 SN - 1434-1948 SN - 1099-0682 IS - 21 SP - 3526 EP - 3531 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yarman, Aysu A1 - Gröbe, Glenn A1 - Neumann, Bettina A1 - Kinne, Mathias A1 - Gajovic-Eichelmann, Nenad A1 - Wollenberger, Ursula A1 - Hofrichter, Martin A1 - Ullrich, Rene A1 - Scheibner, Katrin A1 - Scheller, Frieder W. T1 - The aromatic peroxygenase from Marasmius rutola-a new enzyme for biosensor applications JF - Analytical & bioanalytical chemistry N2 - The aromatic peroxygenase (APO; EC 1.11.2.1) from the agraric basidomycete Marasmius rotula (MroAPO) immobilized at the chitosan-capped gold-nanoparticle-modified glassy carbon electrode displayed a pair of redox peaks with a midpoint potential of -278.5 mV vs. AgCl/AgCl (1 M KCl) for the Fe(2+)/Fe(3+) redox couple of the heme-thiolate-containing protein. MroAPO oxidizes aromatic substrates such as aniline, p-aminophenol, hydroquinone, resorcinol, catechol, and paracetamol by means of hydrogen peroxide. The substrate spectrum overlaps with those of cytochrome P450s and plant peroxidases which are relevant in environmental analysis and drug monitoring. In M. rotula peroxygenase-based enzyme electrodes, the signal is generated by the reduction of electrode-active reaction products (e.g., p-benzoquinone and p-quinoneimine) with electro-enzymatic recycling of the analyte. In these enzyme electrodes, the signal reflects the conversion of all substrates thus representing an overall parameter in complex media. The performance of these sensors and their further development are discussed. KW - Unspecific peroxygenase KW - Cytochrome P450 KW - Biosensors KW - Phenolic substances Y1 - 2012 U6 - https://doi.org/10.1007/s00216-011-5497-y SN - 1618-2642 VL - 402 IS - 1 SP - 405 EP - 412 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Peng, Lei A1 - Utesch, Tillmann A1 - Yarman, Aysu A1 - Jeoung, Jae-Hun A1 - Steinborn, Silke A1 - Dobbek, Holger A1 - Mroginski, Maria Andrea A1 - Tanne, Johannes A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Surface-Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosine-Coordinated Heme Protein JF - Chemistry - a European journal N2 - Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant k(s) values between 0.93 and 2.86 s(-1) and apparent formal potentials E-app(0)' between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH. KW - electrochemistry KW - electron transfer KW - heme proteins KW - molecular modeling KW - monolayers Y1 - 2015 U6 - https://doi.org/10.1002/chem.201405932 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 20 SP - 7596 EP - 7602 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Chen, Jian A1 - Wollenberger, Ursula A1 - Lisdat, Fred A1 - Ge, Bixia A1 - Scheller, Frieder W. T1 - Superoxide sensor based on hemin modified electrode Y1 - 2000 ER -