TY - JOUR A1 - Benina, Maria A1 - Ribeiro, Dimas Mendes A1 - Gechev, Tsanko S. A1 - Müller-Röber, Bernd A1 - Schippers, Jos H. M. T1 - A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - Oxidative stress causes dramatic changes in the expression levels of many genes. The formation of a functional protein through successful mRNA translation is central to a coordinated cellular response. To what extent the response towards reactive oxygen species (ROS) is regulated at the translational level is poorly understood. Here we analysed leaf- and tissue-specific translatomes using a set of transgenic Arabidopsis thaliana lines expressing a FLAG-tagged ribosomal protein to immunopurify polysome-bound mRNAs before and after oxidative stress. We determined transcript levels of 171 ROS-responsive genes upon paraquat treatment, which causes formation of superoxide radicals, at the whole-organ level. Furthermore, the translation of mRNAs was determined for five cell types: mesophyll, bundle sheath, phloem companion, epidermal and guard cells. Mesophyll and bundle sheath cells showed the strongest response to paraquat treatment. Interestingly, several ROS-responsive transcription factors displayed cell type-specific translation patterns, while others were translated in all cell types. In part, cell type-specific translation could be explained by the length of the 5-untranslated region (5-UTR) and the presence of upstream open reading frames (uORFs). Our analysis reveals insights into the translational regulation of ROS-responsive genes, which is important to understanding cell-specific responses and functions during oxidative stress. The study illustrates the response of different Arabidopsis thaliana leaf cells and tissues to oxidative stress at the translational level, an aspect of reactive oxygen species (ROS) biology that has been little studied in the past. Our data reveal insights into how translational regulation of ROS-responsive genes is fine-tuned at the cellular level, a phenomenon contributing to the integrated physiological response of leaves to stresses involving changes in ROS levels. KW - Arabidopsis KW - gene regulation KW - oxidative stress KW - tissue-specific KW - translation Y1 - 2015 U6 - https://doi.org/10.1111/pce.12355 SN - 0140-7791 SN - 1365-3040 VL - 38 IS - 2 SP - 349 EP - 363 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Campbell, Kevin L. A1 - Hofreiter, Michael T1 - Resurrecting phenotypes from ancient DNA sequences: promises and perspectives JF - Canadian journal of zoology = Revue canadienne de zoologie N2 - Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller's sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these "living" processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology. KW - paleophysiology KW - ancient DNA KW - extinct species KW - adaptation KW - protein structure Y1 - 2015 U6 - https://doi.org/10.1139/cjz-2014-0337 SN - 0008-4301 SN - 1480-3283 VL - 93 IS - 9 SP - 701 EP - 710 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Dittmann-Thünemann, Elke A1 - Gugger, Muriel A1 - Sivonen, Kaarina A1 - Fewer, David P. T1 - Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria JF - Trends in microbiology N2 - Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms. Y1 - 2015 U6 - https://doi.org/10.1016/j.tim.2015.07.008 SN - 0966-842X SN - 1878-4380 VL - 23 IS - 10 SP - 642 EP - 652 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Fettke, Jörg A1 - Fernie, Alisdair R. T1 - Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism JF - Trends in plant science N2 - In most plants, carbohydrates represent the major energy store as well as providing the building blocks for essential structural polymers. Although the major pathways for carbohydrate biosynthesis, degradation, and transport are well characterized, several key steps have only recently been discovered. In addition, several novel minor metabolic routes have been uncovered in the past few years. Here we review current studies of plant carbohydrate metabolism detailing the expanding compendium of functionally characterized transport proteins as well as our deeper comprehension of more minor and conditionally activated metabolic pathways. We additionally explore the pertinent questions that will allow us to enhance our understanding of the response of both major and minor carbohydrate fluxes to changing cellular circumstances. Y1 - 2015 U6 - https://doi.org/10.1016/j.tplants.2015.04.012 SN - 1360-1385 VL - 20 IS - 8 SP - 490 EP - 497 PB - Elsevier CY - London ER - TY - JOUR A1 - Hartmann, Tobias A1 - Schwanhold, Nadine A1 - Leimkühler, Silke T1 - Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria JF - Biochimica et biophysica acta : Proteins and proteomics N2 - The global carbon cycle depends on the biological transformations of C-1 compounds, which include the reductive incorporation of CO2 into organic molecules (e.g. in photosynthesis and other autotrophic pathways), in addition to the production of CO2 from formate, a reaction that is catalyzed by formate dehydrogenases (FDHs). FDHs catalyze, in general, the oxidation of formate to CO2 and H+. However, selected enzymes were identified to act as CO2 reductases, which are able to reduce CO2 to formate under physiological conditions. This reaction is of interest for the generation of formate as a convenient storage form of H-2 for future applications. Cofactor-containing FDHs are found in anaerobic bacteria and archaea, in addition to facultative anaerobic or aerobic bacteria. These enzymes are highly diverse and employ different cofactors such as the molybdenum cofactor (Moco), FeS clusters and flavins, or cytochromes. Some enzymes include tungsten (W) in place of molybdenum (Mo) at the active site. For catalytic activity, a selenocysteine (SeCys) or cysteine (Cys) ligand at the Mo atom in the active site is essential for the reaction. This review will focus on the characterization of Mo- and W-containing FDHs from bacteria, their active site structure, subunit compositions and its proposed catalytic mechanism. We will give an overview on the different mechanisms of substrate conversion available so far, in addition to providing an outlook on bio-applications of FDHs. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. (C) 2014 Elsevier B.V. All rights reserved. KW - Molybdenum cofactor KW - L-Cysteine desulfurase KW - Formate dehydrogenase KW - Chaperone KW - Bis-MGD Y1 - 2015 U6 - https://doi.org/10.1016/j.bbapap.2014.12.006 SN - 1570-9639 SN - 0006-3002 VL - 1854 IS - 9 SP - 1090 EP - 1100 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hermanussen, Michael A1 - Scheffler, Christiane A1 - Groth, Detlef A1 - Aßmann, Christian T1 - Height and skeletal morphology in relation to modern life style JF - Journal of physiological anthropology N2 - Height and skeletal morphology strongly relate to life style. Parallel to the decrease in physical activity and locomotion, modern people are slimmer in skeletal proportions. In German children and adolescents, elbow breadth and particularly relative pelvic breadth (50th centile of bicristal distance divided by body height) have significantly decreased in recent years. Even more evident than the changes in pelvic morphology are the rapid changes in body height in most modern countries since the end-19th and particularly since the mid-20th century. Modern Japanese mature earlier; the age at take-off (ATO, the age at which the adolescent growth spurt starts) decreases, and they are taller at all ages. Preece-Baines modelling of six national samples of Japanese children and adolescents, surveyed between 1955 and 2000, shows that this gain in height is largely an adolescent trend, whereas height at take-off (HTO) increased by less than 3 cm since 1955; adolescent growth (height gain between ATO and adult age) increased by 6 cm. The effect of globalization on the modern post-war Japanese society ("community effect in height") on adolescent growth is discussed. KW - Pelvic breadth KW - Elbow breadth KW - Growth KW - Adult height KW - Community effect in height Y1 - 2015 U6 - https://doi.org/10.1186/s40101-015-0080-4 SN - 1880-6805 VL - 34 PB - BioMed Central CY - London ER - TY - JOUR A1 - Hixson, Stefanie M. A1 - Sharma, Bhanu A1 - Kainz, Martin J. A1 - Wacker, Alexander A1 - Arts, Michael T. T1 - Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems JF - Environmental reviews = Dossiers environnement N2 - Long-chain polyunsaturated fatty acids (LC-PUFA) are critical for the health of aquatic and terrestrial organisms; therefore, understanding the production, distribution, and abundance of these compounds is imperative. Although the dynamics of LC-PUFA production and distribution in aquatic environments has been well documented, a systematic and comprehensive comparison to LC-PUFA in terrestrial environments has not been rigorously investigated. Here we use a data synthesis approach to compare and contrast fatty acid profiles of 369 aquatic and terrestrial organisms. Habitat and trophic level were interacting factors that determined the proportion of individual omega-3 (n-3) or omega-6 (n-6) PUFA in aquatic and terrestrial organisms. Higher total n-3 content compared with n-6 PUFA and a strong prevalence of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) characterized aquatic versus terrestrial organisms. Conversely, terrestrial organisms had higher linoleic acid (LNA) and alpha-linolenic acid (ALA) contents than aquatic organisms; however, the ratio of ALA: LNA was higher in aquatic organisms. The EPA + DHA content was higher in aquatic animals than terrestrial organisms, and increased from algae to invertebrates to vertebrates in the aquatic environment. An analysis of covariance (ANCOVA) revealed that fatty acid composition was highly dependent on the interaction between habitat and trophic level. We conclude that freshwater ecosystems provide an essential service through the production of n-3 LC-PUFA that are required to maintain the health of terrestrial organisms including humans. KW - aquatic ecosystems KW - conservation KW - eicosapentaenoic acid KW - docosahexaenoic acid KW - food webs Y1 - 2015 U6 - https://doi.org/10.1139/er-2015-0029 SN - 1208-6053 SN - 1181-8700 VL - 23 IS - 4 SP - 414 EP - 424 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Kirchner, Sebastian A1 - Ignatova, Zoya T1 - Emerging roles of tRNA in adaptive translation, signalling dynamics and disease JF - Nature reviews N2 - tRNAs, nexus molecules between mRNAs and proteins, have a central role in translation. Recent discoveries have revealed unprecedented complexity of tRNA biosynthesis, modification patterns, regulation and function. In this Review, we present emerging concepts regarding how tRNA abundance is dynamically regulated and how tRNAs (and their nucleolytic fragments) are centrally involved in stress signalling and adaptive translation, operating across a wide range of timescales. Mutations in tRNAs or in genes affecting tRNA biogenesis are also linked to complex human diseases with surprising heterogeneity in tissue vulnerability, and we highlight cell-specific aspects that modulate the disease penetrance of tRNA-based pathologies. Y1 - 2015 U6 - https://doi.org/10.1038/nrg3861 SN - 1471-0056 SN - 1471-0064 VL - 16 IS - 2 SP - 98 EP - 112 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Knapp, Michael A1 - Lalueza-Fox, Carles A1 - Hofreiter, Michael T1 - Re-inventing ancient human DNA JF - Investigative Genetics N2 - For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next-or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research. KW - Archaic humans KW - Human evolution KW - Human population genomics KW - Next/second-generation sequencing Y1 - 2015 U6 - https://doi.org/10.1186/s13323-015-0020-4 SN - 2041-2223 VL - 6 PB - BioMed Central CY - London ER - TY - JOUR A1 - Mendel, Ralf R. A1 - Leimkühler, Silke T1 - The biosynthesis of the molybdenum cofactors JF - Journal of biological inorganic chemistry N2 - The biosynthesis of the molybdenum cofactors (Moco) is an ancient, ubiquitous, and highly conserved pathway leading to the biochemical activation of molybdenum. Moco is the essential component of a group of redox enzymes, which are diverse in terms of their phylogenetic distribution and their architectures, both at the overall level and in their catalytic geometry. A wide variety of transformations are catalyzed by these enzymes at carbon, sulfur and nitrogen atoms, which include the transfer of an oxo group or two electrons to or from the substrate. More than 50 molybdoenzymes were identified to date. In all molybdoenzymes except nitrogenase, molybdenum is coordinated to a dithiolene group on the 6-alkyl side chain of a pterin called molybdopterin (MPT). The biosynthesis of Moco can be divided into three general steps, with a fourth one present only in bacteria and archaea: (1) formation of the cyclic pyranopterin monophosphate, (2) formation of MPT, (3) insertion of molybdenum into molybdopterin to form Moco, and (4) additional modification of Moco in bacteria with the attachment of a nucleotide to the phosphate group of MPT, forming the dinucleotide variant of Moco. This review will focus on the biosynthesis of Moco in bacteria, humans and plants. KW - Molybdenum KW - Molybdenum cofactor KW - cPMP KW - bis-MGD KW - Sulfuration KW - Sulfite oxidase Y1 - 2015 U6 - https://doi.org/10.1007/s00775-014-1173-y SN - 0949-8257 SN - 1432-1327 VL - 20 IS - 2 SP - 337 EP - 347 PB - Springer CY - New York ER -