TY - JOUR A1 - Wang, Ming A1 - White, Neil A1 - Grimm, Volker A1 - Hofman, Helen A1 - Doley, David A1 - Thorp, Grant A1 - Cribb, Bronwen A1 - Wherritt, Ella A1 - Han, Liqi A1 - Wilkie, John A1 - Hanan, Jim T1 - Pattern-oriented modelling as a novel way to verify and validate functional-structural plant models BT - a demonstration with the annual growth module of avocado JF - Annals of botany N2 - Background and Aims Functional-structural plant (FSP) models have been widely used to understand the complex interactions between plant architecture and underlying developmental mechanisms. However, to obtain evidence that a model captures these mechanisms correctly, a clear distinction must be made between model outputs used for calibration and thus verification, and outputs used for validation. In pattern-oriented modelling (POM), multiple verification patterns are used as filters for rejecting unrealistic model structures and parameter combinations, while a second, independent set of patterns is used for validation. Key Results After calibration, our model simultaneously reproduced multiple observed architectural patterns. The model then successfully predicted, without further calibration, the validation patterns. The model supports the hypothesis that carbon allocation can be modelled as being dependent on current organ biomass and sink strength of each organ type, and also predicted the observed developmental timing of the leaf sink-source transition stage. KW - Pattern-oriented modelling KW - agent-based model KW - individual-based model KW - functional-structural plant model KW - model analysis KW - model verification KW - model validation KW - ODD (Overview, Design concepts, Details) protocol KW - Persea americana KW - plant architecture KW - carbon allocation KW - L-systems Y1 - 2018 U6 - https://doi.org/10.1093/aob/mcx187 SN - 0305-7364 SN - 1095-8290 VL - 121 IS - 5 SP - 941 EP - 959 PB - Oxford Univ. Press CY - Oxford ER -