TY - JOUR A1 - Ferrera, Isabel A1 - Sarmento, Hugo A1 - Priscu, John C. A1 - Chiuchiolo, Amy A1 - Gonzalez, Jose M. A1 - Grossart, Hans-Peter T1 - Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient JF - Frontiers in microbiology N2 - Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient). KW - AAP bacteria KW - photoheterotrophy KW - pufM gene KW - freshwater lakes KW - latitudinal gradients KW - biogeography Y1 - 2017 U6 - https://doi.org/10.3389/fmicb.2017.00175 SN - 1664-302X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Rojas-Jimenez, Keilor A1 - Wurzbacher, Christian A1 - Bourne, Elizabeth Charlotte A1 - Chiuchiolo, Amy A1 - Priscu, John C. A1 - Grossart, Hans-Peter T1 - Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica JF - Scientific reports N2 - Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93% and 60.32% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-15598-w SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER -