TY - GEN A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - mRNA transfection-induced activation of primary human monocytes and macrophages BT - Dependence on carrier system and nucleotide modifcation T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1403 KW - sirna transfection KW - mediated delivery KW - gene delivery KW - efficient KW - immunogenicity KW - lipoplexes KW - cells KW - therapeutics KW - polarization KW - pathways Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515694 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - mRNA transfection-induced activation of primary human monocytes and macrophages BT - Dependence on carrier system and nucleotide modifcation JF - Scientific reports N2 - Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications. KW - sirna transfection KW - mediated delivery KW - gene delivery KW - efficient KW - immunogenicity KW - lipoplexes KW - cells KW - therapeutics KW - polarization KW - pathways Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-60506-4 SN - 2045-2322 VL - 10 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London ER - TY - THES A1 - Moradian, Hanieh T1 - Modulation of human macrophage activity by mRNA-mediated genetic engineering N2 - Macrophages play an integral role for the innate immune system. It is critically important for basic research and therapeutic applications to find approaches to potentially modulate their function as the first line of defense. Transient genetic engineering via delivery of synthetic mRNA can serve for such purposes as a robust, reliable and safe technology to modulate macrophage functions. However, a major drawback particularly in the transfection of sensitive immune cells such as macrophages is the immunogenicity of exogenous IVT-mRNAs. Consequently, the direct modulation of human macrophage activity by mRNA-mediated genetic engineering was the aim of this work. The synthetic mRNA can instruct macrophages to synthesize specific target proteins, which can steer macrophage activity in a tailored fashion. Thus, the focus of this dissertation was to identify parameters triggering unwanted immune activation of macrophages, and to find approaches to minimize such effects. When comparing different carrier types as well as mRNA chemistries, the latter had unequivocally a more pronounced impact on activation of human macrophages and monocytes. Exploratory investigations revealed that the choice of nucleoside chemistry, particularly of modified uridine, plays a crucial role for IVT-mRNA-induced immune activation, in a dose-dependent fashion. Additionally, the contribution of the various 5’ cap structures tested was only minor. Moreover, to address the technical aspects of the delivery of multiple genes as often mandatory for advanced gene delivery studies, two different strategies of payload design were investigated, namely “bicistronic” delivery and “monocistronic” co-delivery. The side-by-side comparison of mRNA co-delivery via a bicistronic design (two genes, one mRNA) with a monocistronic design (two gene, two mRNAs) unexpectedly revealed that, despite the intrinsic equimolar nature of the bicistronic approach, it was outperformed by the monocistronic approach in terms of reliable co-expression when quantified on the single cell level. Overall, the incorporation of chemical modifications into IVT-mRNA by using respective building blocks, primarily with the aim to minimize immune activation as exemplified in this thesis, has the potential to facilitate the selection of the proper mRNA chemistry to address specific biological and clinical challenges. The technological aspects of gene delivery evaluated and validated by the quantitative methods allowed us to shed light on crucial process parameters and mRNA design criteria, required for reliable co-expression schemes of IVT-mRNA delivery. N2 - Makrophagen spielen eine wesentliche Rolle für das angeborene (innate) Immunsystem. Sowohl für die Grundlagenforschung sowie als auch für therapeutische Anwendungen ist es von größter Wichtigkeit, Möglichkeiten zu finden, die Funktion von Makrophagen als erstem Abwehrmechanismus des Immunsystems zu modulieren. Transientes Genetic Engineering mittels synthetischer mRNA kann hierbei als robuste, zuverlässige und sichere Technologie zur Modulation des Zellverhaltens zu dienen. Eine besondere Herausforderung ist jedoch die Immunogenität exogener IVT-mRNAs, insbesondere für sensitive Immunzellen wie Makrophagen. Die direkte Modulation der Zellaktivität von humanen Makrophagen durch mRNA-vermitteltes Genetic Engineering ist das Ziel dieser Arbeit. Mit synthetischer mRNA lassen sich Makrophagen so instruieren, dass sie spezifische Zielproteine produzieren, um die Zellaktivität bedarfsgerecht zu steuern. Der Hauptfokus dieser Dissertation war die Identifikation der Parameter, die eine aus dem IVT-mRNA Transfer resultierende, unerwünschten Zellaktivierung bei Makrophagen auslösen und Ansätze zu finden, um diese zu minimieren. Beim Vergleich verschiedener Transfektionsagenzien und Nukleinsäurekompositionen der mRNA zeigte sich, dass letztere einen weitaus eindeutigeren Effekt auf die Zellaktivierung von humanen Makrophagen und Monozyten haben. Explorative Untersuchungen ergaben, dass die Wahl der Nukleosidchemie, insbesondere des modifizierten Uridins, eine entscheidende Rolle für diese dosisabhängige Immunaktivierung durch IVT-mRNA spielt. Im Vergleich dazu war der Einfluss der verschiedenen getesteten 5'-Cap-Strukturen nur geringfügig. Der Transfer mehrerer Gene in Zellen ist für komplexe Studien und Anwendungen oft zwingend erforderlich. Hierzu wurden die technischen Aspekte von zwei verschiedenen Strategien untersucht, nämlich die "bicistronische" Transfektion und die "monocistronische" Co-Transfektion. Der direkte Vergleich von mRNA-Co-Transfer über ein bicistronisches Design (zwei Gene, eine mRNA) mit einem monocistronischen Design (zwei Gene, zwei mRNAs) ergab überraschenderweise, dass trotz der intrinsischen äquimolaren Natur des bicistronischen Ansatzes dieser dem monocistronische Ansatz in Bezug auf eine zuverlässige Koexpression bei der Quantifizierung auf Einzelzellebene unterlegen war. Wie in dieser Arbeit gezeigt kann die Einbeziehung geeigneter chemischer Modifikationen in IVT-mRNA durch die Verwendung der entsprechenden Bausteine bei der Synthese zur Bewältigung spezifischer biologischer und klinischer Herausforderungen beitragen, in erster Linie durch die Minimierung der Immunaktivierung. Die Evaluation und Validierung technologischer Aspekte des Gentransfers durch quantitative Methoden ermöglichten uns auch entscheidende Prozessparameter und Kriterien für das mRNA-Design zu identifizieren, die für eine zuverlässige Co-Expression von Genen nach IVT-mRNA Transfektion erforderlich sind. T2 - Modulation der Aktivität humaner Makrophagen durch mRNA-vermittelte gentechnische Eingriffe KW - In vitro transcription technology KW - Messenger RNA (mRNA) KW - mRNA chemistry KW - primary human macrophages KW - macrophage activation KW - genetic engineering KW - innate immune response KW - co-delivery of multiple genes KW - co-transfection KW - In-vitro-Transkriptionstechnologie KW - Boten-RNA (mRNA) KW - simultane Einbringung multipler Gene KW - Co-Transfektion KW - Gentechnik KW - angeborene Immunantwort KW - mRNA-Chemie KW - Makrophagen-Aktivierung KW - primäre humane Makrophagen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548579 ER -