TY - JOUR A1 - Haase, Tobias A1 - Krost, Annalena A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Peter, Jan A1 - Kamann, Stefanie A1 - Jung, Friedrich A1 - Lendlein, Andreas A1 - Zohlnhöfer, Dietlind A1 - Rüder, Constantin T1 - In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds JF - Journal of Tissue Engineering and Regenerative Medicine N2 - Poly(ether imide) (PEI), which can be chemically functionalized with biologically active ligands, has emerged as a potential biomaterial for medical implants. Electrospun PEI scaffolds have shown advantageous properties, such as enhanced endothelial cell adherence, proliferation and low platelet adhesion in in vitro experiments. In this study, the in vivo behaviour of electrospun PEI scaffolds and PEI films was examined in a murine subcutaneous implantation model. Electrospun PEI scaffolds and films were surgically implanted subcutaneously in the dorsae of mice. The surrounding subcutaneous tissue response was examined via histopathological examination at 7 and 28days after implantation. No serious adverse events were observed for both types of PEI implants. The presence of macrophages or foreign body giant cells in the vicinity of the implants and the formation of a fibrous capsule indicated a normal foreign body reaction towards PEI films and scaffolds. Capsule thickness and inflammatory infiltration cells significantly decreased for PEI scaffolds during days 7-28 while remaining unchanged for PEI films. The infiltration of cells into the implant was observed for PEI scaffolds 7days after implantation and remained stable until 28days of implantation. Additionally some, but not all, PEI scaffold implants induced the formation of functional blood vessels in the vicinity of the implants. Conclusively, this study demonstrates the in vivo biocompatibility of PEI implants, with favourable properties of electrospun PEI scaffolds regarding tissue integration and wound healing. KW - poly(ether imide) KW - in vivo study KW - electrospun scaffold KW - capsule formation KW - foreign body giant cells KW - vascularization Y1 - 2017 U6 - https://doi.org/10.1002/term.2002 SN - 1932-6254 SN - 1932-7005 VL - 11 IS - 4 SP - 1034 EP - 1044 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Krüger-Genge, Anne A1 - Dietze, Stefanie A1 - Yan, Wan A1 - Liu, Yue A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Endothelial cell migration, adhesion and proliferation on different polymeric substrates JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - BACKGROUND: The formation of a functionally-confluent endothelial cell (EC) monolayer affords proliferation of EC, which only happens in case of appropriate migratory activity. AIM OF THE STUDY: The migratory pathway of human umbilical endothelial cells (HUVEC) was investigated on different polymeric substrates. MATERIAL AND METHODS: Surface characterization of the polymers was performed by contact angle measurements and atomic force microscopy under wet conditions. 30,000 HUVEC per well were seeded on polytetrafluoroethylene (PTFE) (theta(adv) = 119 degrees +/- 2 degrees), on low-attachment plate LAP (theta(adv) = 28 degrees +/- 2 degrees) and on polystyrene based tissue culture plates (TCP, theta(adv) = 22 degrees +/- 1 degrees). HUVEC tracks (trajectories) were recorded by time lapse microscopy and the euclidean distance (straight line between starting and end point), the total distance and the velocities of HUVEC not leaving the vision field were determined. RESULTS: On PTFE, 42 HUVEC were in the vision field directly after seeding. The mean length of single migration steps (SML) was 6.1 +/- 5.2 mu m, the mean velocity (MV) 0.40 +/- 0.3 mu m.min(-1) and the complete length of the trajectory (LT) was 710 +/- 440 mu m. On TCP 82 HUVEC were in the vision field subsequent to seeding. The LT was 840 +/- 550 mu m, the SML 6.1 +/- 5.2 mu m and the MV 0.44 +/- 0.3 mu m.min(-1). The trajectories on LAP differed significantly in respect to SML (2.4 +/- 3.9 mu m, p <0.05), the MV (0.16 +/- 0.3 mu m.min(-1), p <0.05) and the LT (410 +/- 300 mu m, p <0.05), compared to PTFE and TCP. Solely on TCP a nearly confluent EC monolayer developed after three days. While on TCP diffuse signals of vinculin were found over the whole basal cell surface organizing the binding of the cells by focal adhesions, on PTFE vinculin was merely arranged at the cell rims, and on the hydrophilic material (LAP) no focal adhesions were found. CONCLUSION: The study revealed that the wettability of polymers affected not only the initial adherence but also the migration of EC, which is of importance for the proliferation and ultimately the endothelialization of polymer-based biomaterials. KW - Endothelial cells KW - migration KW - polymer-based biomaterials KW - cytokine release Y1 - 2019 U6 - https://doi.org/10.3233/CH-189317 SN - 1386-0291 SN - 1875-8622 VL - 70 IS - 4 SP - 511 EP - 529 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Blocki, Anna A1 - Löwenberg, Candy A1 - Jiang, Yi A1 - Kratz, Karl A1 - Neffe, Axel T. A1 - Jung, Friedrich A1 - Lendlein, Andreas T1 - Response of encapsulated cells to a gelatin matrix with varied bulk and microenvironmental elastic properties JF - Polymers for advanced technologies N2 - Gelatin-based hydrogels offer various biochemical cues that support encapsulated cells and are therefore suitable as cell delivery vehicles in regenerative medicine. However, besides the biochemical signals, biomechanical cues are crucial to ensure an optimal support of encapsulated cells. Hence, we aimed to correlate the cellular response of encapsulated cells to macroscopic and microscopic elastic properties of glycidylmethacrylate (GMA)-functionalized gelatin-based hydrogels. To ensure that different observations in cellular behavior could be attributed to differences in elastic properties, an identical concentration as well as degree of functionalization of biopolymers was utilized to form covalently crosslinked hydrogels. Elastic properties were merely altered by varying the average gelatin-chain length. Hydrogels exhibited an increased degree of swelling and a decreased bulk elastic modulus G with prolonged autoclaving of the starting solution. This was accompanied by an increase of hydrogel mesh size and thus by a reduction of crosslinking density. Tougher hydrogels retained the largest amount of cells; however, they also interfered with cell viability. Softer gels contained a lower cell density, but supported cell elongation and viability. Observed differences could be partially attributed to differences in bulk properties, as high crosslinking densities interfere with diffusion and cell spreading and thus can impede cell viability. Interestingly, a microscopic elastic modulus in the range of native soft tissue supported cell viability and elongation best while ensuring a good cell entrapment. In conclusion, gelatin-based hydrogels providing a soft tissue-like microenvironment represent adequate cell delivery vehicles for tissue engineering approaches. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - mechanotransduction KW - hydrogel KW - gelatin KW - cell encapsulation KW - matrix elasticity Y1 - 2017 U6 - https://doi.org/10.1002/pat.3947 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1245 EP - 1251 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Rüder, Constantin A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Haase, Tobias A1 - Peter, Jan A1 - Jung, Friedrich A1 - Lendlein, Andreas A1 - Zohlnhöfer, Dietlind T1 - Influence of fibre diameter and orientation of electrospun copolyetheresterurethanes on smooth muscle and endothelial cell behaviour JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Polymers exhibiting cell-selective effects represent an extensive research field with high relevance for biomedical applications e.g. in the cardiovascular field supporting re-endothelialization while suppressing smooth muscle cell overgrowth. Such an endothelial cell-selective effect could be recently demonstrated for a copolyetheresterurethane (PDC) containing biodegradable poly(p-dioxanone) and poly(epsilon-caprolactone) segments, which selectively enhanced the adhesion of human umbilical vein endothelial cells (HUVEC) while suppressing the attachment of smooth muscle cells (SMC). In this study we investigated the influence of the fibre orientation (random and aligned) and fibre diameter (2 mu m and 500 nm) of electrospun PDC scaffolds on the adhesion, proliferation and apoptosis of HUVEC and SMC. Adhesion, viability and proliferation of HUVEC was diminished when the fibre diameter was reduced to a submicron scale, while the orientation of the microfibres did only slightly influence the cellular behaviour. In contrast, a submicron fibre diameter improved SMC viability. In conclusion, PDC scaffolds with micron-sized single fibres could be promising candidate materials for cell-selective stent coatings. KW - Endothelialization KW - drug eluting stent KW - degradable polymer KW - electrospinning KW - cell selectivity Y1 - 2013 U6 - https://doi.org/10.3233/CH-131787 SN - 1386-0291 SN - 1875-8622 VL - 55 IS - 4 SP - 513 EP - 522 PB - IOS Press CY - Amsterdam ER -