TY - JOUR A1 - Paragas, Erickson M. A1 - Humphreys, Sara C. A1 - Min, Joshua A1 - Joswig-Jones, Carolyn A. A1 - Leimkühler, Silke A1 - Jones, Jeffrey P. T1 - ecoAO BT - a simple system for the study of human aldehyde oxidases role in drug metabolism JF - ACS OMEGA N2 - Although aldehyde oxidase (AO) is an important hepatic drug-metabolizing enzyme, it remains understudied and is consequently often overlooked in preclinical studies, an oversight that has resulted in the failure of multiple clinical trials. AO’s preclusion to investigation stems from the following: (1) difficulties synthesizing metabolic standards due to the chemospecificity and regiospecificity of the enzyme and (2) significant inherent variability across existing in vitro systems including liver cytosol, S9 fractions, and primary hepatocytes, which lack specificity and generate discordant expression and activity profiles. Here, we describe a practical bacterial biotransformation system, ecoAO, addressing both issues simultaneously. ecoAO is a cell paste of MoCo-producing Escherichia coli strain TP1017 expressing human AO. It exhibits specific activity toward known substrates, zoniporide, 4-trans-(N,N-dimethylamino)cinnamaldehyde, O6-benzylguanine, and zaleplon; it also has utility as a biocatalyst, yielding milligram quantities of synthetically challenging metabolite standards such as 2-oxo-zoniporide. Moreover, ecoAO enables routine determination of kcat and V/K, which are essential parameters for accurate in vivo clearance predictions. Furthermore, ecoAO has potential as a preclinical in vitro screening tool for AO activity, as demonstrated by its metabolism of 3-aminoquinoline, a previously uncharacterized substrate. ecoAO promises to provide easy access to metabolites with the potential to improve pharmacokinetic clearance predictions and guide drug development. Y1 - 2017 U6 - https://doi.org/10.1021/acsomega.7b01054 SN - 2470-1343 VL - 2 SP - 4820 EP - 4827 PB - American Chemical Society CY - Washington ER -