TY - JOUR A1 - Uribe, Veronica A1 - Ramadass, Radhan A1 - Dogra, Deepika A1 - Rasouli, S. Javad A1 - Gunawan, Felix A1 - Nakajima, Hiroyuki A1 - Chiba, Ayano A1 - Reischauer, Sven A1 - Mochizuki, Naoki A1 - Stainier, Didier Y. R. T1 - In vivo analysis of cardiomyocyte proliferation during trabeculation JF - Development : Company of Biologists N2 - Cardiomyocyte proliferation is crucial for cardiac growth, patterning and regeneration; however, few studies have investigated the behavior of dividing cardiomyocytes in vivo. Here, we use time-lapse imaging of beating hearts in combination with the FUCCI system to monitor the behavior of proliferating cardiomyocytes in developing zebrafish. Confirming in vitro observations, sarcomere disassembly, as well as changes in cell shape and volume, precede cardiomyocyte cytokinesis. Notably, cardiomyocytes in zebrafish embryos and young larvae mostly divide parallel to the myocardial wall in both the compact and trabecular layers, and cardiomyocyte proliferation is more frequent in the trabecular layer. While analyzing known regulators of cardiomyocyte proliferation, we observed that the Nrg/ErbB2 and TGF beta signaling pathways differentially affect compact and trabecular layer cardiomyocytes, indicating that distinct mechanisms drive proliferation in these two layers. In summary, our data indicate that, in zebrafish, cardiomyocyte proliferation is essential for trabecular growth, but not initiation, and set the stage to further investigate the cellular and molecular mechanisms driving cardiomyocyte proliferation in vivo. KW - Heart development KW - Cardiomyocyte proliferation KW - Trabeculation KW - Sarcomere Y1 - 2018 U6 - https://doi.org/10.1242/dev.164194 SN - 0950-1991 SN - 1477-9129 VL - 145 IS - 14 PB - Company biologists LTD CY - Cambridge ER - TY - JOUR A1 - Demal, Till Joscha A1 - Heise, Melina A1 - Reiz, Benedikt A1 - Dogra, Deepika A1 - Braenne, Ingrid A1 - Reichenspurner, Hermann A1 - Männer, Jörg A1 - Aherrahrou, Zouhair A1 - Schunkert, Heribert A1 - Erdmann, Jeanette A1 - Abdelilah-Seyfried, Salim T1 - A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A JF - Scientific reports N2 - The genetics of many congenital heart diseases (CHDs) can only unsatisfactorily be explained by known chromosomal or Mendelian syndromes. Here, we present sequencing data of a family with a potentially multigenic origin of CHD. Twelve of nineteen family members carry a familial mutation [NM_004329.2:c.1328 G > A (p.R443H)] which encodes a predicted deleterious variant of BMPR1A. This mutation co-segregates with a linkage region on chromosome 1 that associates with the emergence of severe CHDs including Ebstein’s anomaly, atrioventricular septal defect, and others. We show that the continuous overexpression of the zebrafish homologous mutation bmpr1aap.R438H within endocardium causes a reduced AV valve area, a downregulation of Wnt/ß-catenin signalling at the AV canal, and growth of additional tissue mass in adult zebrafish hearts. This finding opens the possibility of testing genetic interactions between BMPR1A and other candidate genes within linkage region 1 which may provide a first step towards unravelling more complex genetic patterns in cardiovascular disease aetiology. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-39648-7 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Chapman, Eric M. A1 - Lant, Benjamin A1 - Ohashi, Yota A1 - Yu, Bin A1 - Schertzberg, Michael A1 - Go, Christopher A1 - Dogra, Deepika A1 - Koskimaki, Janne A1 - Girard, Romuald A1 - Li, Yan A1 - Fraser, Andrew G. A1 - Awad, Issam A. A1 - Abdelilah-Seyfried, Salim A1 - Gingras, Anne-Claude A1 - Derry, William Brent T1 - A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis JF - Nature Communications N2 - Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1(-/-) zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-09829-z SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER -