TY - JOUR A1 - Chang, Dan A1 - Knapp, Michael A1 - Enk, Jacob A1 - Lippold, Sebastian A1 - Kircher, Martin A1 - Lister, Adrian M. A1 - MacPhee, Ross D. E. A1 - Widga, Christopher A1 - Czechowski, Paul A1 - Sommer, Robert A1 - Hodges, Emily A1 - Stümpel, Nikolaus A1 - Barnes, Ian A1 - Dalén, Love A1 - Derevianko, Anatoly A1 - Germonpré, Mietje A1 - Hillebrand-Voiculescu, Alexandra A1 - Constantin, Silviu A1 - Kuznetsova, Tatyana A1 - Mol, Dick A1 - Rathgeber, Thomas A1 - Rosendahl, Wilfried A1 - Tikhonov, Alexey N. A1 - Willerslev, Eske A1 - Hannon, Greg A1 - Lalueza i Fox, Carles A1 - Joger, Ulrich A1 - Poinar, Hendrik N. A1 - Hofreiter, Michael A1 - Shapiro, Beth T1 - The evolutionary and phylogeographic history of woolly mammoths BT - a comprehensive mitogenomic analysis JF - Scientific reports N2 - Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0–2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths. Y1 - 2017 U6 - https://doi.org/10.1038/srep44585 SN - 2045-2322 VL - 7 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - González-Fortes, Gloria M. A1 - Kolbe, Ben A1 - Fernandes, Daniel A1 - Meleg, Ioana N. A1 - Garcia-Vazquez, Ana A1 - Pinto-Llona, Ana C. A1 - Constantin, Silviu A1 - de Torres, Trino J. A1 - Ortiz, Jose E. A1 - Frischauf, Christine A1 - Rabeder, Gernot A1 - Hofreiter, Michael A1 - Barlow, Axel T1 - Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears JF - Molecular ecology N2 - Ancient DNA studies have revolutionized the study of extinct species and populations, providing insights on phylogeny, phylogeography, admixture and demographic history. However, inferences on behaviour and sociality have been far less frequent. Here, we investigate the complete mitochondrial genomes of extinct Late Pleistocene cave bears and middle Holocene brown bears that each inhabited multiple geographically proximate caves in northern Spain. In cave bears, we find that, although most caves were occupied simultaneously, each cave almost exclusively contains a unique lineage of closely related haplotypes. This remarkable pattern suggests extreme fidelity to their birth site in cave bears, best described as homing behaviour, and that cave bears formed stable maternal social groups at least for hibernation. In contrast, brown bears do not show any strong association of mitochondrial lineage and cave, suggesting that these two closely related species differed in aspects of their behaviour and sociality. This difference is likely to have contributed to cave bear extinction, which occurred at a time in which competition for caves between bears and humans was likely intense and the ability to rapidly colonize new hibernation sites would have been crucial for the survival of a species so dependent on caves for hibernation as cave bears. Our study demonstrates the potential of ancient DNA to uncover patterns of behaviour and sociality in ancient species and populations, even those that went extinct many tens of thousands of years ago. KW - ancient DNA KW - extinction KW - homing KW - sociality KW - Ursus arctos KW - Ursus spelaeus Y1 - 2016 U6 - https://doi.org/10.1111/mec.13800 SN - 0962-1083 SN - 1365-294X VL - 25 SP - 4907 EP - 4918 PB - Wiley-Blackwell CY - Hoboken ER -