TY - THES A1 - Czesnick, Hjördis T1 - Functional specialization of Arabidopsis poly(A) polymerases in relation to flowering time and stress T1 - Funktionelle Spezialisierung von Arabidopsis Poly(A)-Polymerasen in Hinsicht auf Blühzeit und Stress N2 - Polyadenylation is a decisive 3’ end processing step during the maturation of pre-mRNAs. The length of the poly(A) tail has an impact on mRNA stability, localization and translatability. Accordingly, many eukaryotic organisms encode several copies of canonical poly(A) polymerases (cPAPs). The disruption of cPAPs in mammals results in lethality. In plants, reduced cPAP activity is non-lethal. Arabidopsis encodes three nuclear cPAPs, PAPS1, PAPS2 and PAPS4, which are constitutively expressed throughout the plant. Recently, the detailed analysis of Arabidopsis paps1 mutants revealed a subset of genes that is preferentially polyadenylated by the cPAP isoform PAPS1 (Vi et al. 2013). Thus, the specialization of cPAPs might allow the regulation of different sets of genes in order to optimally face developmental or environmental challenges. To gain insights into the cPAP-based gene regulation in plants, the phenotypes of Arabidopsis cPAPs mutants under different conditions are characterized in detail in the following work. An involvement of all three cPAPs in flowering time regulation and stress response regulation is shown. While paps1 knockdown mutants flower early, paps4 and paps2 paps4 knockout mutants exhibit a moderate late-flowering phenotype. PAPS1 promotes the expression of the major flowering inhibitor FLC, supposedly by specific polyadenylation of an FLC activator. PAPS2 and PAPS4 exhibit partially overlapping functions and ensure timely flowering by repressing FLC and at least one other unidentified flowering inhibitor. The latter two cPAPs act in a novel regulatory pathway downstream of the autonomous pathway component FCA and act independently from the polyadenylation factors and flowering time regulators CstF64 and FY. Moreover, PAPS1 and PAPS2/PAPS4 are implicated in different stress response pathways in Arabidopsis. Reduced activity of the poly(A) polymerase PAPS1 results in enhanced resistance to osmotic and oxidative stress. Simultaneously, paps1 mutants are cold-sensitive. In contrast, PAPS2/PAPS4 are not involved in the regulation of osmotic or cold stress, but paps2 paps4 loss-of-function mutants exhibit enhanced sensitivity to oxidative stress provoked in the chloroplast. Thus, both PAPS1 and PAPS2/PAPS4 are required to maintain a balanced redox state in plants. PAPS1 seems to fulfil this function in concert with CPSF30, a polyadenylation factor that regulates alternative polyadenylation and tolerance to oxidative stress. The individual paps mutant phenotypes and the cPAP-specific genetic interactions support the model of cPAP-dependent polyadenylation of selected mRNAs. The high similarity of the polyadenylation machineries in yeast, mammals and plants suggests that similar regulatory mechanisms might be present in other organism groups. The cPAP-dependent developmental and physiological pathways identified in this work allow the design of targeted experiments to better understand the ecological and molecular context underlying cPAP-specialization. N2 - Polyadenylierung ist ein entscheidender Schritt der 3‘-End-Prozessierung und somit der Reifung von prä-mRNAs. Die Länge des Poly(A)-Schwanzes entscheidet unter anderem über die Stabilität und Lokalisierung von mRNAs. Viele Eukaryoten besitzen mehrere Kopien der kanonischen Poly(A)-Polymerasen (PAP). In Säugetieren ist das Ausknocken dieser Enzyme letal. Pflanzen mit reduzierter PAP-Aktivität sind hingegen überlebensfähig. Arabidopsis exprimiert drei im Zellkern lokalisierte PAPs namens PAPS1, PAPS2 und PAPS4. Kürzlich ergab die Analyse von Arabidopsis paps1-Mutanten, dass eine Gen-Untergruppe vorzugsweise von PAPS1 polyadenyliert wird (Vi et al. 2013). Die Spezialisierung der PAPs könnte der Regulierung verschiedener Gengruppen in Anpassung an die Pflanzenentwicklung und an bestimmte Umweltbedingungen dienen. In der vorliegenden Arbeit werden die Phänotypen von Arabidopsis PAP-Mutanten unter verschiedenen Bedingungen im Detail charakterisiert, um die PAP-basierte Genregulation besser zu verstehen. Es wird gezeigt, dass alle drei PAPs an der Regulation der Blühzeit und an der Regulation von Stressantworten beteiligt sind. Während paps1-Mutanten früh blühen, zeigen paps4- und paps2 paps4-Mutanten einen spät blühenden Phänotypen. PAPS1 fördert die Expression des Blühzeitinhibitors FLC vermutlich über die Polyadenylierung eines FLC-Aktivators. PAPS2 und PAPS4 haben teilweise überlappende Funktionen und unterdrücken die Expression von FLC und mindestens einem weiteren, bisher unbekannten Blühzeitinhibitor. Die beiden PAPs agieren in einem neu entdeckten, genetischen Pfad gemeinsam mit dem Blühzeitregulator FCA, jedoch unabhängig von den Polyadenylierungsfaktoren und Blühzeitregulatoren CstF64 und FY. Des Weiteren regulieren PAPS1 und PAPS2/PAPS4 verschiedene Stressantworten. Das Reduzieren der PAPS1-Aktivität führt zu verstärkter Resistenz gegen osmotischen und oxidativen Stress, bei gleichzeitig erhöhter Kältesensitivität der Pflanzen. PAPS2/PAPS4 sind im Gegensatz dazu nicht an der Regulation von Kälte- oder osmotischem Stress beteiligt. Die paps2 paps4-Mutanten besitzen jedoch reduzierte Toleranz gegen oxidativen Stress in Chloroplasten. Das heißt, sowohl PAPS1 als auch PAPS2/PAPS4 sind nötig, um einen ausgeglichenen Redoxstatus der Pflanzenzellen zu gewährleisten. PAPS1 arbeitet bei dieser Regulation scheinbar mit dem Polyadenylierungsfaktor CPSF30 zusammen. Die individuellen Phänotypen der paps-Mutanten und die spezifischen genetischen Interaktionen der Poly(A)-Polymerasen in Arabidopsis unterstützen das Modell der PAP-abhängigen Polyadenylierung von selektierten mRNAs. Da die Polyadenylierungskomplexe in Hefen, Säugetieren und Pflanzen starke Ähnlichkeiten aufweisen, ist es denkbar, dass dieser Regulierungsmechanismus auch in anderen Organismengruppen präsent ist. Basierend auf den Ergebnissen dieser Arbeit können gezielt weitere Experimente entwickelt werden, um die ökologischen und molekularen Grundlagen der PAP-Spezialisierung zu untersuchen. KW - polyadenylation KW - flowering KW - Polyadenylierung KW - Arabidopsis KW - Poly(A)-Polymerasen KW - Blühzeit Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78015 ER - TY - GEN A1 - Kappel, Christian A1 - Trost, Gerda A1 - Czesnick, Hjördis A1 - Ramming, Anna A1 - Kolbe, Benjamin A1 - Vi, Song Lang A1 - Bispo, Cláudia A1 - Becker, Jörg D. A1 - de Moor, Cornelia A1 - Lenhard, Michael T1 - Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana N2 - The poly(A) tail at 3’ ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 259 KW - comprehensive analysis KW - cytoplasmic polyadenylation KW - differential expression analysis KW - gene-expression KW - mammalian-cells KW - messenger-rna polyadenylation KW - poly(a)-binding protein KW - specificity factor KW - tail-length KW - translational control Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96400 SP - 1 EP - 30 ER -